Shock Formation for 2D Isentropic Euler Equations with Self-similar Variables  

在线阅读下载全文

作  者:Wenze SU 

机构地区:[1]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Chinese Annals of Mathematics,Series B》2024年第3期349-412,共64页数学年刊(B辑英文版)

基  金:supported by the China Scholarship Council(No.202106100096).

摘  要:The author studies the 2D isentropic Euler equations with the ideal gas law.He exhibits a set of smooth initial data that give rise to shock formation at a single point near the planar symmetry.These solutions to the 2D isentropic Euler equations are associated with non-zero vorticity at the shock and have uniform-in-time-1/3-Holder bound.Moreover,these point shocks are of self-similar type and share the same profile,which is a solution to the 2D self-similar Burgers equation.The proof of the solutions,following the 3D construction of Buckmaster,Shkoller and Vicol(in 2023),is based on the stable 2D self-similar Burgers profile and the modulation method.

关 键 词:2D isentropic Euler equations Shock formation Self-similar solution 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象