检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈威 陈一 屈美娇 胡长淮 朱益飞 张祥 汤朝伟 侯豪豪 CHEN Wei;CHEN Yi;QU Meijiao;HU Changhuai;ZHU Yifei;ZHANG Xiang;TANG Chaowei;HOU Haohao(Mechanical and Electrical Engineering College,Xi’an Polytechnic University,Xi’an 710600,China;National Key Lab of Aerospace Power System and Plasma Technology,Xi’an 710038,China;School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China;School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China;Aeronautics Engineering College,Air Force Engineering University,Xi’an 710038,China;College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
机构地区:[1]西安工程大学机电工程学院,西安710600 [2]航空动力系统与等离子体技术全国重点实验室,西安710038 [3]西安交通大学机械工程学院,西安710049 [4]西安交通大学航天航空学院,西安710049 [5]空军工程大学航空工程学院,西安710038 [6]南京航空航天大学能源与动力工程学院,南京210016
出 处:《空军工程大学学报》2024年第4期21-27,共7页Journal of Air Force Engineering University
基 金:陕西省博士后科研项目(2023BSHEDZZ56)。
摘 要:针对航空发动机燃烧室内滑动弧等离子体点火的特性,采用数值模拟的方法对航空发动机单头部模型燃烧室进行滑动弧等离子体点火研究,将滑动弧等离子体简化为动态热源,并将滑动弧等离子体点火与电火花点火对比,归纳2种点火方式下燃烧室点火过程中温度分布与火焰演化的规律,总结滑动弧等离子体点火的特性。计算结果表明,电火花点火和滑动弧等离子体点火2种点火方式所能达到的平均温度峰值基本相同。在滑动弧等离子体点火过程中,放电功率为200 W、空气流量为25 m^(3)/h条件下,余气系数为1时,着火延迟时间为224.6 ms;余气系数为2时,着火延迟时间为324.9 ms;余气系数为4时,着火延迟时间为878.7 ms。另外,在放电功率为200 W、余气系数为1的条件下,当空气流量为15 m^(3)/h时,着火延迟时间为194.8 ms;空气流量为35 m^(3)/h时,着火延迟时间为298.9 ms。结果表明着火延迟时间随着余气系数、空气流量的增大而增长。In order to obtain the characteristics of gliding arc plasma ignition in the combustion chamber of aero-engine,the gliding arc plasma ignition simulation of aero-engine single dome model combustor is studied by numerical simulation.The gliding arc plasma is simplified as a dynamic heat source,gliding arc plasma ignition is compared to electric spark ignition,a rule of temperature distribution and flame evolution in combustion chamber is made by the two ignition methods,and the characteristics of gliding arc plasma ignition are summed up.The calculation results show that the average temperature peaks of the two ignition methods are basically the same.For the gliding arc plasma ignition,when the discharge power is 200 W under conditions of air flow being 25 m^(3)/h,the residual air coefficient is 1,and the ignition delay time is 224.6 ms.When the air coefficient is 2,the ignition delay time is 324.9 ms.And when the residual air coefficient is 4,the ignition delay time is 878.7 ms.In addition,when the discharge power is 200 W under conditions of the air coefficient being 1,and the air flow being 15 m^(3)/h,the ignition delay time is 194.8 ms.When the air flow is 35 m^(3)/h,the ignition delay time is 298.9 ms.
关 键 词:单头部模型燃烧室 航空发动机 滑动弧等离子体 点火 数值模拟
分 类 号:V231[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7