基于压缩感知的网络数据传输高密度医疗信息安全存储方法  被引量:1

Research on High-density Medical Information Security Storage Method Based on Compression Sensing Network Data Transmission

在线阅读下载全文

作  者:尤子旸 穆慰 邵星 YOU Ziyang;MU Wei;SHAO Xing(Shanghai Eighth People’s Hospital,Shanghai 200235,China;Huangpu Branch,Shanghai Ninth People’s Hospital Attached to Shanghai Jiaotong University Medical School,Shanghai 200011,China)

机构地区:[1]上海市第八人民医院,上海200235 [2]上海交通大学医学院附属第九人民医院黄浦分院,上海200011

出  处:《微型电脑应用》2024年第7期160-163,共4页Microcomputer Applications

摘  要:针对医疗信息存在存储空间不足和信息容易泄露的问题,研究基于压缩感知的网络数据传输方法,提出一种高密度医疗信息安全存储方法。将压缩感知应用到医疗数据存储,能有效地降低存储空间的需求,并增加数据的安全性。首先基于压缩感知构建了网络数据传输模型,然后再传输模型的基础上构建医疗信息安全存储方法,最后利用仿真实验来高密度医疗信息安全存储方法的性能。结果表明模型方法的传输延迟平均耗时为29.83 s,比传统方法低11.83 s,同时模型方法的重构误差平均值为3.92%,也比传统方法低4.69%。这验证了模型方法在医疗信息安全存储中具有很高的性能,旨在为医疗信息管理和安全存储提供有力支持。To address the issues of insufficient storage space and information leakage in medical information,a network data transmission method based on compression sensing is studied,and a high-density medical information secure storage method is proposed.Applying compression sensing to medical data storage can effectively reduce storage space requirements and increase data security.A network data transmission model is constructed based on compression sensing,and a secure storage method for medical information is constructed based on the transmission model.Simulation experiments are conducted to evaluate the performance of high-density medical information secure storage methods.The results show that the average transmission delay time of the model method is 29.83 seconds,which is 11.83 seconds lower than traditional methods.At the same time,the average reconstruction error of the model method is 3.92%,which is also 4.69%lower than traditional methods.This verifies the high performance of the model method in the secure storage of medical information,aiming to provide strong support for medical information management and secure storage.

关 键 词:压缩感知 网络数据传输 信息安全 均方误差 存储性能 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象