检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王克涛 陈世锋 陈贵 韦锦[1] 蒙丽雯 陈泉成 Wang Ketao;Chen Shifeng;Chen Gui;Wei Jin;Meng Liwen;Chen Quancheng(School of Mechanical Engineering,Guangxi University,Nanning,530000,China)
出 处:《中国农机化学报》2024年第8期262-269,共8页Journal of Chinese Agricultural Mechanization
基 金:国家自然科学基金(61763001);广西创新驱动发展专项基金(桂科AA19254019)。
摘 要:在聚集遮挡等复杂园林环境下,现有的目标检测算法很难对球形绿篱进行准确检测。针对这一问题,提出一种基于YOLOv5s的算法YOLO-CBS,用于提高园林球形绿篱的检测精度。首先,将坐标注意力(CA)引入YOLOv5s的主干网络,CA不仅考虑通道间的关系还考虑特征空间的位置信息,因而能够使模型更准确地识别和定位目标绿篱;其次,用双向特征金字塔网络(BiFPN)替换路径聚合网络(PANet),以提高特征融合的效率;最后,将输出端的非极大值抑制(NMS)改为Soft-NMS,以提高对遮挡绿篱、聚集绿篱等复杂场景下的目标绿篱检测精度。典型绿篱数据集试验结果表明,与YOLOv5s算法相比,YOLO-CBS算法平均精度提高3.4%。Under complex garden environment such as aggregation and occlusion,it is difficult for the existing target detection algorithms to accurately detect spherical hedge.In order to solve this problem,an algorithm YOLO-CBS based on YOLOv5s is proposed to improve the detection accuracy of spherical hedge in gardens.Firstly,coordinate attention(CA)is introduced into the backbone network of YOLOv5s,which considers the relationship between channels and the location information of the feature space,so that the model can more accurately identify and locate the target hedge.Secondly,the path aggregation network(PANet)is replaced by bidirectional feature pyramid network(BiFPN)to improve the efficiency of feature fusion.Finally,the non⁃maximum suppression(NMS)at the output is changed to Soft-NMS to improve the detection accuracy of target hedges under complex scenes such as occluded hedges and dense hedges.The results of experiments on a typical hedgerow data set show that the average accuracy of the YOLO-CBS algorithm is improved by 3.4%compared to the YOLOv5s algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147