检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冷友伟 LENG Youwei(Songjiang Fire and Rescue Division,Shanghai 201600,China)
出 处:《中国人民警察大学学报》2024年第8期54-60,共7页Journal of China People's Police University
摘 要:为有效解决故障电弧检测问题,提出一种基于时频分布图的轻量级网络小电流故障电弧检测方法。参照相关标准进行电弧试验,并采集电弧试验数据,通过把电流数据转换成合成时频分布图构造训练集和测试集,输入STF-GhostNet模型识别故障电弧并输出结果。试验结果表明:采用该方法进行故障电弧检测准确率约为94.1%,与传统BP模型、AlexNet相比,准确率明显提高。In order to effectively solve the problem of arc fault detection,a method of low-current fault arc detection in lightweight networks based on time-frequency distribution graphs is proposed.An arc experiment was conducted based on related standard to collect arc experiment data,thereby constructing a training set and test set by convert⁃ing current data into synthetic time-frequency distribution graphs.STF-GhostNet model was used to identify arc fault and output the result.Experimental results show that the accuracy of arc fault detection using this method is about 94.1%,which is higher than the traditional BP model and AlexNet.
关 键 词:神经网络 时频分析 电弧故障检测 小电流电弧 STF-GhostNet
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49