Big Data Application Simulation Platform Design for Onboard Distributed Processing of LEO Mega-Constellation Networks  

在线阅读下载全文

作  者:Zhang Zhikai Gu Shushi Zhang Qinyu Xue Jiayin 

机构地区:[1]School of Electronics and Information Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China [2]Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology,Shenzhen 518055,China [3]Broadband Communications Research Department,Peng Cheng Laboratory,Shenzhen 518000,China

出  处:《China Communications》2024年第7期334-345,共12页中国通信(英文版)

基  金:supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307);the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297);the Shenzhen Science and Technology Program ZDSYS20210623091808025;Stable Support Plan Program GXWD20231129102638002;the Major Key Project of PCL(No.PCL2024A01)。

摘  要:Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.

关 键 词:big data application Hadoop LEO mega-constellation multidimensional simulation onboard distributed processing 

分 类 号:TN927.2[电子电信—通信与信息系统] TP311.13[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象