Floating Waste Discovery by Request via Object-Centric Learning  

在线阅读下载全文

作  者:Bingfei Fu 

机构地区:[1]School of Computer Science,Fudan University,Shanghai,200438,China

出  处:《Computers, Materials & Continua》2024年第7期1407-1424,共18页计算机、材料和连续体(英文)

摘  要:Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.

关 键 词:Unsupervised object discovery object-centric learning pseudo data generation real-world object discovery by request 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象