检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘以轩 陈智丽[1] 高皓 张辉[1] 夏兴华[1] Pan Yixuan;Chen Zhili;Gao Hao;Zhang Hui;Xia Xinghua(School of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,Liaoning,China)
机构地区:[1]沈阳建筑大学信息与控制工程学院,辽宁沈阳110168
出 处:《计算机应用与软件》2024年第7期136-144,共9页Computer Applications and Software
基 金:国家自然科学基金项目(61602322);辽宁省自然科学基金项目(20180550059);辽宁省教育厅重点攻关项目(lnzd201904)。
摘 要:乳腺X线摄影术是目前国际上公认的有效的乳腺癌早期筛查手段。提出一种基于YOLOv3网络的乳腺X线图像肿块检测方法。该方法能够在保证精度的同时,以较快的速度一次完成对整幅图像中肿块的检测。应用迁移学习技术,将由数字化乳腺X线图像学习到的肿块病变检测知识迁移到全域数字图像,有效解决了目前全域数字图像数据集缺乏的问题。使用五折交叉验证方法,在DDSM和INbreast数据集上进行实验验证,最终得到的五折间肿块检测平均准确率为81.34%。Mammography is internationally recognized as an effective screening tool for early breast cancer.This paper proposes a mammographic mass detection method based on YOLOv3 network.The method could complete mass detection of the whole image at a faster speed while ensuring accuracy.By applying transfer learning technology,the mass lesion detection knowledge learned from the digitized mammograms were transferred to the full-field digital mammograms,which effectively solved the current lack of full-field digital mammography datasets.The five-fold cross-validation method was used for evaluation based on DDSM and INbreast datasets.Through extensive experiments,the obtained average accuracy of the mass detection over the five folds is 81.34%.
关 键 词:深度学习 YOLOv3 乳腺X线图像 肿块检测 迁移学习
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.204