检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳理工大学自动化与电气工程学院,辽宁沈阳110159
出 处:《工业控制计算机》2024年第7期111-113,共3页Industrial Control Computer
摘 要:针对目前有杆泵抽油井故障诊断人工分析方法效率低问题,提出一种基于小波包能量和布谷鸟算法优化极限学习机(CS-ELM)的有杆泵抽油井故障诊断方法。首先对电功率数据进行小波包分解得到多个子频带,计算各频带的能量值再归一化处理后组合成特征向量;然后通过CS算法优化ELM使其得到最优的输入权值和隐含层阈值;最后利用CSELM模型对提取的特征向量进行有杆泵抽油井故障诊断并与SVM、BP和ELM的诊断结果进行对比。仿真结果表明:CSELM的有杆泵抽油井故障诊断的准确率最高,验证了该方法的有效性。Currently,the manual analysis method for fault diagnosis of rod-pumped oil wells is inefficient,a fault diagnosis method of sucker rod pumping wells based on wavelet packet energy and cuckoo algorithm optimized extreme learning machine(CS-ELM)is proposed in this paper.Firstly,the electric power data is decomposed by wavelet packet to obtain multiple sub-bands,and the energy values of each band are calculated and normalized to form a feature vector.Then,the CS algorithm is used to optimize the ELM to obtain the optimal input weight and hidden layer threshold.Finally,the CS-ELM model is used to diagnose the fault of the rod pumping well with the extracted feature vector and compared with the diagnosis results of SVM,BP and ELM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.154.119