面向数据压缩的NOMA-MEC系统能耗最小化研究  

Research on Energy Consumption Minimization for a Data Compression Based NOMA-MEC System

在线阅读下载全文

作  者:施丽琴 刘璇 卢光跃[1] SHI Liqin;LIU Xuan;LU Guangyue(Shaanxi Key Laboratory of Information Communication Network and Security,Xi’an University of Posts and Telecommunications Xi’an 710121,China)

机构地区:[1]西安邮电大学陕西省信息通信网络及安全重点实验室,西安710121

出  处:《电子与信息学报》2024年第7期2888-2897,共10页Journal of Electronics & Information Technology

基  金:国家自然科学基金(62301421)。

摘  要:该文研究基于数据压缩的非正交多址-移动边缘计算(NOMA-MEC)系统中系统能耗最小化问题。考虑到部分压缩与卸载方案和基站端计算能力有限等条件,通过联合优化各用户的任务压缩和卸载比例、发射功率以及任务压缩时间等变量,建立一个系统能耗最小化优化问题。为了求解该问题,首先推导出各用户最佳发射功率的闭式表达式。接着利用连续凸逼近(SCA)方法对原问题的非凸约束进行近似,然后提出一个基于SCA的高效迭代算法来求解原问题,从而得到该系统的最佳资源分配方案。最后借助于计算机仿真对所提出方案的性能优势进行验证,仿真结果表明相比于其他基准方案,该文所提方案能有效降低系统能耗。The system energy consumption minimization problem is studied for a data compression based Non-Orthogonal Multiple Access-Mobile Edge Computing(NOMA-MEC)system.Considering the partial compression and offloading schemes and the limited computation capacity at the base station,a system energy consumption minimization optimization problem is formulated by jointly optimizing the users’data compression and offloading ratios,transmit power,data compression time,etc.In order to solve this problem,closed-form expression of each user’s optimal transmit power is firstly derived.Then the Successive Convex Approximation(SCA)method is used to approximate the non-convex constraints of the formulated problem,and An SCA based efficient iterative algorithm is proposed to solve the formulated problem,obtaining the optimal resource allocation scheme of the system.Finally,the simulation results verify the advantages of the proposed scheme via computer simulations and show that compared with other benchmark schemes,the proposed scheme can effectively reduce the system energy consumption.

关 键 词:部分压缩 资源分配 能耗最小化 NOMA 

分 类 号:TN926[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象