检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹佳成 黄监初 杨丽琳 顾雯叶 ZOU Jia-cheng;HUANG Jian-chu;YANG Li-lin;GU Wen-ye(Hydrology and Water Resources Monitoring Center of Lower Ganjiang River,Yichun 336028,China;Shandong Survey and Design Institute of Water Conservancy Co.,Ltd.,Jinan 250013,China;CCCC Third Harbor Consultants Co.,Ltd.,Shanghai 200032,China)
机构地区:[1]赣江下游水文水资源监测中心,江西宜春336028 [2]山东省水利勘测设计院有限公司,山东济南250013 [3]中交第三航务工程勘察设计院有限公司,上海200032
出 处:《水电能源科学》2024年第7期12-15,共4页Water Resources and Power
基 金:江西省“科技+水利”联合计划项目(2022KSG01006)。
摘 要:准确的径流模拟对流域水资源优化配置、防汛抗旱具有重要作用。为此,以赣江流域为例,构建了新安江模型与LSTM的耦合模型(XAJ-LSTM),对比分析了XAJ-LSTM、新安江模型和LSTM模型的径流模拟差异,并评估了汛期划分对径流模拟精度的影响。结果表明,在赣江流域,LSTM模型的最佳神经元参数为第一层18个,第二层36个;LSTM模型的径流模拟效果要优于新安江模型,且利用新安江模型对LSTM模型进行物理约束后,R RMSE的降幅达11%;考虑汛期划分能够提升XAJ-LSTM模型对汛期与非汛期径流的模拟精度,且在汛期的改善效果更明显,R RMSE减幅达18%。研究成果可为赣江流域径流模拟与预报提供参考。Accurate streamflow simulation plays an important role in the optimal allocation of water resources,flood control and drought relief.In this study,taking Ganjiang River Basin for an example,a coupled XAJ-LSTM model of the Xin'anjiang(XAJ)model and LSTM model was constructed,and the differences in streamflow simulation between the coupled model,the XAJ model and the LSTM model are compared and analyzed.The impact of flood season division on the streamflow simulation accuracy was evaluated.The results show that the optimal neuron combination of LSTM model is 18 neurons in the first layer and 36 neurons in the second layer.Compared with the XAJ model,LSTM model has high simulation accuracy;Furthermore,the LSTM model coupled physical constraints based on the XAJ model achieves approximate 11%lower of the root mean squared error R RMSE.Considering the flood season division can improve streamflow simulation accuracy of the XAJ-LSTM model,the improvement is more significant in the flood season,with the R RMSE reduced by 18%.This study can provide technique support for the streamflow simulation and prediction for the Ganjiang River Basin.
关 键 词:径流模拟 长短期记忆神经网络 新安江模型 汛期划分
分 类 号:TV121[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.80.203