Evaluations of Chris-Jerry Data Using Generalized Progressive Hybrid Strategy and Its Engineering Applications  

在线阅读下载全文

作  者:Refah Alotaibi Hoda Rezk Ahmed Elshahhat 

机构地区:[1]Department of Mathematical Sciences,College of Science,Princess Nourah bint Abdulrahman University,P.O.Box 84428,Riyadh,11671,Saudi Arabia [2]Department of Statistics,Al-Azhar University,Cairo,11884,Egypt [3]Faculty of Technology and Development,Zagazig University,Zagazig,44519,Egypt

出  处:《Computer Modeling in Engineering & Sciences》2024年第9期3073-3103,共31页工程与科学中的计算机建模(英文)

基  金:This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R50);Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

摘  要:A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.

关 键 词:Chris-Jerry model generalized censoring likelihood and Bayes estimations MCMC algorithms engineering applications 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象