Incorporating contextual evidence to improve implicit discourse relation recognition in Chinese  

在线阅读下载全文

作  者:Sheng XU Peifeng LI Qiaoming ZHU 

机构地区:[1]School of Computer Science and Technology,Soochow University,Suzhou 215000,China

出  处:《Frontiers of Computer Science》2024年第3期91-104,共14页中国计算机科学前沿(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.61836007,61773276);the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.

摘  要:The discourse analysis task,which focuses on understanding the semantics of long text spans,has received increasing attention in recent years.As a critical component of discourse analysis,discourse relation recognition aims to identify the rhetorical relations between adjacent discourse units(e.g.,clauses,sentences,and sentence groups),called arguments,in a document.Previous works focused on capturing the semantic interactions between arguments to recognize their discourse relations,ignoring important textual information in the surrounding contexts.However,in many cases,more than capturing semantic interactions from the texts of the two arguments are needed to identify their rhetorical relations,requiring mining more contextual clues.In this paper,we propose a method to convert the RST-style discourse trees in the training set into dependency-based trees and train a contextual evidence selector on these transformed structures.In this way,the selector can learn the ability to automatically pick critical textual information from the context(i.e.,as evidence)for arguments to assist in discriminating their relations.Then we encode the arguments concatenated with corresponding evidence to obtain the enhanced argument representations.Finally,we combine original and enhanced argument representations to recognize their relations.In addition,we introduce auxiliary tasks to guide the training of the evidence selector to strengthen its selection ability.The experimental results on the Chinese CDTB dataset show that our method outperforms several state-of-the-art baselines in both micro and macro F1 scores.

关 键 词:discourse parsing discourse relation recognition contextual evidence selection 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象