检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hengyu LIU Tiancheng ZHANG Fan LI Minghe YU Ge YU
机构地区:[1]School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China [2]Software College,Northeastern University,Shenyang 110169,China
出 处:《Frontiers of Computer Science》2024年第3期155-170,共16页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.62272093,62137001,U1811261,and 61902055).
摘 要:Knowledge tracing aims to track students’knowledge status over time to predict students’future performance accurately.In a real environment,teachers expect knowledge tracing models to provide the interpretable result of knowledge status.Markov chain-based knowledge tracing(MCKT)models,such as Bayesian Knowledge Tracing,can track knowledge concept mastery probability over time.However,as the number of tracked knowledge concepts increases,the time complexity of MCKT predicting student performance increases exponentially(also called explaining away problem).When the number of tracked knowledge concepts is large,we cannot utilize MCKT to track knowledge concept mastery probability over time.In addition,the existing MCKT models only consider the relationship between students’knowledge status and problems when modeling students’responses but ignore the relationship between knowledge concepts in the same problem.To address these challenges,we propose an inTerpretable pRobAbilistiC gEnerative moDel(TRACED),which can track students’numerous knowledge concepts mastery probabilities over time.To solve explain away problem,we design long and short-term memory(LSTM)-based networks to approximate the posterior distribution,predict students’future performance,and propose a heuristic algorithm to train LSTMs and probabilistic graphical model jointly.To better model students’exercise responses,we proposed a logarithmic linear model with three interactive strategies,which models students’exercise responses by considering the relationship among students’knowledge status,knowledge concept,and problems.We conduct experiments with four real-world datasets in three knowledge-driven tasks.The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students’future performance and can learn the relationship among students,knowledge concepts,and problems from students’exercise sequences.We also conduct several case studies.The case studies show that TRACED exhibits excellent
关 键 词:probabilistic graphical model deep learning knowledge tracing learner modeling
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7