检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiran SONG Hong HUANG Jianxun LIAN Hai JIN
机构地区:[1]National Engineering Research Center for Big Data Technology and System,Services Computing Technology and System Lab,Cluster and Grid Computing Lab,School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China [2]Microsoft Research Asia,Beijing 100080,China
出 处:《Frontiers of Computer Science》2024年第3期247-249,共3页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.62172174,61932004).
摘 要:1 Introduction Graph Neural Networks(GNNs)have gained widespread adoption in recommendation systems,and nowadays there is a pressing need to effectively manage large-scale graph data[1].When it comes to large graphs,GNNs may encounter the scalability issue stemming from their multi-layer messagepassing operations.Consequently,scaling GNNs has emerged as a crucial research area in recent years,with numerous scaling strategies being proposed.
关 键 词:SCALING gained operations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28