检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦腾 QIN Teng(State Grid Shandong Electric Power Company,Jinan Licheng District Power Supply Company,Jinan 250100,China)
机构地区:[1]国网山东省电力公司济南市历城区供电公司,山东济南250100
出 处:《电工技术》2024年第12期139-142,共4页Electric Engineering
摘 要:针对低压台区数量众多、线损管理难度大,对其进行精益化管理能够有效提高电网的经济效益。基于此,提出一种基于大数据技术的低压台区线损异常判定模型。首先,介绍了台区线损异常的影响因素,并分成12类;其次,利用大数据技术采集数据,结合三相混合法进行线损潮流计算,并形成线损图;再次,对台区线损图进行聚类分析挖掘,得到典型配电网线损异常图,便于快速检测异常线损类型;最后,基于指南针布局构建配电网异常线损显示,并结合实际算例验证了诊断模型的有效性。Effective management against line loss of the large number of low-voltage station areas is of great importance to cost-effectiveness improvement of power grids,and also of high difficulty.In view of this,a model for determining abnormal line loss in low-voltage station areas based on big data technology is proposed.First the influencing factors of abnormal line loss are outlined and divided into 12 categories.Second the line loss diagram is obtained by collecting data using big data technology and performing current calculation using three-phase method.The line loss diagram is then clustered and analyzed to obtain a typical distribution network line loss anomaly diagram,which facilitates rapid detection of anomaly type of line loss,and the compass layout is employed to realize anomaly display.The proposed model has been preliminarily indicated effective via a case verification.
分 类 号:TM764[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145