检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包婉玉 闵光云 刘小会[3] 蔡萌琦 周林抒 BAO Wanyu;MIN Guangyun;LIU Xiaohui;CAI Mengqi;ZHOU Linshu(School of Mechanical Engineering,Chengdu University,Chengdu 610106,Sichuan,China;Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,Guangdong,China;School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,Sichuan,China;School of Architecture and Civil Engineering,Chengdu University,Chengdu 610106,Sichuan,China;State Grid Sichuan Electric Power&Energy Comprehensive Service Company,Chengdu 610031,Sichuan,China)
机构地区:[1]成都大学机械工程学院,四川成都610106 [2]中山大学中法核工程与技术学院,广东珠海519082 [3]重庆交通大学土木工程学院,重庆400074 [4]成都大学建筑与土木工程学院,四川成都610106 [5]国网四川综合能源服务有限公司,四川成都610031
出 处:《力学季刊》2024年第2期506-518,共13页Chinese Quarterly of Mechanics
基 金:国家自然科学基金(51507106);中国博士后基金(2021M702371);成都大学高校学生法治教育研究基地课题(2022FZY08)。
摘 要:为对比分析覆冰输电线主共振响应的两种不同离散方法,对固有频率和激励频率接近情况下的覆冰输电线做影响分析,本文主要采取位移响应曲线以及幅频响应曲线分析导线的舞动特征及主共振响应.基于哈密顿原理推导输电导线舞动控制偏微分方程,在面内方向施加谐波荷载以定义主共振,基于三阶模态分别采取直接使用Galerkin方法转换偏微分方程为常微分方程;以及先将动张力平均分配在长度范围内离散后再采用Galerkin离散转换成常微分方程的方法;应用多尺度法求解幅频响应曲线,研究第二种离散方法下调谐参数与激励幅值对覆冰输电线主共振响应的影响以及气动荷载对幅频响应曲线的影响.结果表明,不同的离散方法会影响导线的舞动特征与主共振响应,调谐参数与激励幅值也会对导线的主共振造成影响,第二种离散方法的舞动幅值和相位明显大于第一种离散方法.In order to compare and evaluate two different discrete methods for the main resonance response of iced transmission line,and to conduct the influential analysis of the iced transmission lines whose natural frequency is close to the excitation frequency,this article mainly adopts the displacement response curve and the amplitude frequency response curve to analyze the conductor galloping characteristics and its main resonance response.Based on the Hamiltonian principle,the partial differential equation for the control of transmission line galloping is derived,and the harmonic loads are applied in the in-plane direction to define the main resonance.Based on the third order mode,the Galerkin method is directly used to convert the partial differential equation into an ordinary differential equation,and the dynamic tension is evenly distributed within the length range and discretized before being converted into an ordinary differential equation using Galerkin discretization.Using the multi-scale method to solve the amplitude frequency response,the influence of tuning parameters and excitation amplitude on the main resonance response of iced transmission line under the second discrete method is studied,and the influence of aerodynamic loads on the amplitude frequency response curve is also ascertained.The results show that different discretization methods can affect the galloping characteristics and main resonance response of the wire,and the tuning parameters and excitation amplitude can also affect the main resonance of the wire.The galloping amplitude and phase of the second discretization method are significantly greater than those of the first discretization method.
分 类 号:TM752[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.210.68