检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHONG Siyuan XIE Rongjian LI Yunfei SUN Xiaojin
机构地区:[1]Shanghai Institution of Technology and Physics,Shanghai,200083,China [2]University of Chinese Academy of Sciences,Beijing,100049,China [3]Shanghai Institute of Satellite Engineering,Shanghai,200240,China
出 处:《Journal of Thermal Science》2024年第4期1394-1408,共15页热科学学报(英文版)
摘 要:The loop heat pipe(LHP)is an advanced,efficient two-phase heat transfer unit,whose operational performance may be affected by microgravity conditions in contrast to ground-based applications.The performance of on-orbit temperature data and ground test of a copper-propylene LHP with a condenser temperature range of 243.15 K to 303.15 K were employed to compared and analyzed.The LHP has successfully started up for more than 193 times with a good heat transfer performance and a stable start-up stabilization on-orbit under a complex orbital heating environment for more than eight months.With a small heat load(10.0W),the average start-up time is 110.0 s while the start-up temperature ranges from 5.71 K-12.78 K.The start-up time at large temperature differences in the high temperature zone will be higher than the time required for start-up at smaller temperature differences in the low one.When the condenser temperature is 250.0 K,the stable temperature difference on orbit is 3.83 K,which is generally consistent in heat transfer compared to 2.20 K in the ground test.In this paper,we can conclude that the on-orbit flight data up to now can provide a reference to the design of subsequent LHP space applications.
关 键 词:Loop Heat Pipe(LHP) start up MICROGRAVITY on-orbit experiment
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7