质子导体电解质钇掺杂锆酸铈钡微波烧结制备及其电化学和力学性能  

Microwave Sintering of Proton-Conducting Electrolyte Yttrium-Doped Barium Cerium Zirconate and Its Electrochemical and Mechanical Properties

在线阅读下载全文

作  者:秦嘉辰 高燕 焦震钧 张进 严资林 QIN Jiachen;GAO Yan;JIAO Zhenjun;ZHANG Jin;YAN Zilin(School of Science,Harbin Institute of Technology,Shenzhen 518055,Guangdong,China)

机构地区:[1]哈尔滨工业大学(深圳)理学院,广东深圳518055

出  处:《硅酸盐学报》2024年第7期2243-2253,共11页Journal of The Chinese Ceramic Society

基  金:国家自然科学基金(12172104);深圳市自然科学基金(GXWD20231130153335002);广东省珠江人才计划项目(2021QN02L892);广东省基础与应用基础研究基金(2023A1515010723)。

摘  要:质子陶瓷燃料电池(PCFC)是新一代固体氧化物燃料电池(SOFC)技术的重要发展方向。钇掺杂锆酸铈钡BaZr_(1–x–y)Ce_(x)Y_(y)O_(3–δ)(BZCY)是常用的质子导体电解质材料。然而,BZCY电解质致密化通常需要在超过1700℃的高温烧结5 h以上,这不仅会消耗大量能源和时间成本,而且,由于制备温度高,当电解质冷却到室温时,残余应力可能会导致试样后期力学破坏,进而影响其力学性能。本研究探索了质子导体电解质BaZr_(0.7)Ce_(0.2)Y_(0.1)O_(3–δ)(BZCY721)的微波烧结工艺及研究了其电化学和力学性能。结果表明:相对于传统烧结方式,微波烧结可以将BZCY721烧结温度降低100~150℃。试样在1500℃微波烧结40 min,致密度可以达到97%以上。试样在650℃测试温度下,晶粒阻抗为34.81Ω·cm^(2),晶界阻抗为89.98Ω·cm^(2),电导率为6.41×10^(–4)S·cm^(–1)。力学性能测试结果表明,微波烧结的电解质具有与传统烧结结果相当的弹性模量(190.8 GPa),以及更优的硬度(12.379 GPa)和断裂韧性(0.359 MPa·m^(1/2))。本研究结果为在低温下制备致密BZCY721电解质的进一步研究提供了重要参考。Introduction Solid oxide fuel cell(SOFC), as an efficient and environmentally friendly energy conversion device, has attracted much attention due to its numerous advantages, i.e., high electrical efficiency, low emissions, and high fuel flexibility, compared to other power generation technologies. To address the degradation issues faced by SOFCs operating at high temperatures, developing proton-conducting electrolytes as an alternative to oxygen-conducting electrodes is recognized as an effective strategy to lower the operating temperature of SOFCs. BZCY721(BaZr_(0.7)Ce_(0.2)Y_(0.1)O_(3–δ)), a proton-conducting electrolyte material used in protonic ceramic fuel cells(PCFCs), exhibits both high proton conductivity and excellent chemical stability at lower temperatures. However, sintering the BZCY material typically requires high temperatures exceeding 1 700 ℃ for over 4–5 h, resulting in significant energy consumption and residual stress induced failures of components. It is thus imperative to explore advanced sintering technology to fabricate the BZCY electrolyte materials. Microwave sintering is a field-assisted sintering technique that utilizes the heat generated by the interaction between the specific microwave band and the microstructure of the material to heat the entire material, thereby achieving the desired density. This method effectively reduces the sintering temperature and significantly shortens the sintering time. Methods Commercial BZCY721 powder and NiO powder were mixed at a mass ratio of 20:1, and ground in a ball mill for 24 h to obtain a homogeneous mixed powder. Subsequently, the mixed NiO-BZCY721 powder was blended with a 10% PVA solution at a mass ratio of 10:1 for wet granulation. The granulated powder of 0.8 g was weighted and pressed into a die with a diameter of 15 mm at 350 MPa for 30 s. This process yielded circular specimens with the diameter of 15 mm and the thickness of approximately 1 mm. The experiment was repeated to produce several sets of green samples. The samples were

关 键 词:固体氧化物燃料电池 质子导体电解质 微波烧结 电化学性能 力学性能 

分 类 号:TM911.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象