检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ge-Peng Ji Jing Zhang Dylan Campbell Huan Xiong Nick Barnes
机构地区:[1]Australian National University,Canberra 8105,Australia [2]Mohamed bin Zayed University of Artificial Intelligence,Abu Dhabi 999041,UAE
出 处:《Machine Intelligence Research》2024年第4期631-639,共9页机器智能研究(英文版)
摘 要:Unlike existing fully-supervised approaches,we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach.We leverage the ability of masked autoencoders-self-supervised vision transformers trained on a reconstruction task-to learn in-distribution representations,here,the distribution of healthy colon images.We then perform out-of-distribution reconstruction and inference,with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples.We generate per-pixel anomaly scores for each image by calculating the difference between the input and reconstructed images and use this signal for out-of-distribution(i.e.,polyp)segmentation.Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets.Our code is publicly available at https://github.com/GewelsJI/Polyp-OOD.
关 键 词:Polyp segmentation anomaly segmentation out-of-distribution segmentation masked autoencoder abdomen.
分 类 号:R318[医药卫生—生物医学工程] TP391.41[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7