检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Feng Sun Ming-Kun Xie Sheng-Jun Huang
出 处:《Machine Intelligence Research》2024年第4期801-814,共14页机器智能研究(英文版)
摘 要:In this paper,we study the partial multi-label(PML)image classification problem,where each image is annotated with a candidate label set consisting of multiple relevant labels and other noisy labels.Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions,which unfortunately is unavailable in many real tasks.Furthermore,because the objective function for disambiguation is usually elaborately designed on the whole training set,it can hardly be optimized in a deep model with stochastic gradient descent(SGD)on mini-batches.In this paper,for the first time,we propose a deep model for PML to enhance the representation and discrimination ability.On the one hand,we propose a novel curriculum-based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes.On the other hand,consistency regularization is introduced for model training to balance fitting identified easy labels and exploiting potential relevant labels.Extensive experimental results on the commonly used benchmark datasets show that the proposed method significantlyoutperforms the SOTA methods.
关 键 词:Partial multi-label image classification curriculum-based disambiguation consistency regularization label difficulty candidatelabel set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15