基于CNN-CAM的NLoS/LoS识别方法研究  

Research on NLoS/LoS Identification Method Based on CNN-CAM

在线阅读下载全文

作  者:苏佳[1] 张晶晶 易卿武 黄璐 杨子寒 SU Jia;ZHANG Jingjing;YI Qingwu;HUANG Lu;YANG Zihan(School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;State Key Laboratory of Satellite Navigation System and Equipment Technology,Shijiazhuang 050081,China)

机构地区:[1]河北科技大学信息科学与工程学院,河北石家庄050018 [2]卫星导航系统与装备技术国家重点实验室,河北石家庄050081

出  处:《无线电工程》2024年第8期1871-1880,共10页Radio Engineering

基  金:国家重点研发计划——地下大空间高精度定位导航与控制技术(2021YFB3900800)。

摘  要:针对目前基于信道脉冲响应(Channel Impulse Response,CIR)的非视距(None Line of Sight,NLoS)/视距(Line of Sight,LoS)识别方法精度低、泛化能力差的问题,提出了一种多层卷积神经网络(Convolutional Neural Network,CNN)与通道注意力模块(Channel Attention Module,CAM)相结合的NLoS/LoS识别方法。在多层CNN中嵌入CAM提取原始CIR的时域数据特征,利用全局平均池化层代替全连接层进行特征整合并分类输出。使用欧洲地平线2020计划项目eWINE公开的数据集进行不同结构模型和不同识别方法的对比实验,结果表明,所提出的CNN-CAM模型LoS和NLoS召回率分别达到了92.29%与87.71%,准确率达到了90.00%,F1分数达到了90.22%。与现有多种传统识别方法相比,均具有更好的识别效果。To address the low accuracy and insufficient generalization ability of current None Line of Sight(NLoS)/Line of Sight(LoS)identification methods based on Channel Impulse Response(CIR),a multilayer Convolutional Neural Network(CNN)combined with Channel Attention Module(CAM)for NLoS/LoS identification method is proposed.Firstly,the CAM is embedded in the multilayer CNN to extract the time-domain data features of the original CIR.Then,the global average pooling layer is used to replace the fully connected layer for feature integration and classification output.In addition,the public dataset from project eWINE of the European Horizon 2020 Program is used to perform comparative experiments with different structural models and different identification methods.The results show that the proposed CNN-CAM model has a LoS recall of 92.29%,NLoS recall of 87.71%,accuracy of 90.00%,and F1-score of 90.22%.Compared with the existing conventional methods,it has better performance advantages.

关 键 词:超宽带 非视距/视距识别 卷积神经网络 通道注意力模块 信道脉冲响应 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象