基于TCP-GAN的热带气旋路径预测  

TC track forecasting using a TCP-GAN network

在线阅读下载全文

作  者:张芮 杭仁龙 刘英杰 ZHANG Rui;HANG Renlong;LIU Yingjie(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212100,China;College of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)

机构地区:[1]江苏科技大学计算机学院,镇江212100 [2]南京信息工程大学计算机与软件学院,南京210044

出  处:《江苏科技大学学报(自然科学版)》2024年第3期70-76,共7页Journal of Jiangsu University of Science and Technology:Natural Science Edition

基  金:国家自然科学基金青年基金项目(62206115);江苏省自然科学基金青年基金项目(BK20220646)。

摘  要:准确预测热带气旋路径对于中国沿海地区的防灾减灾具有重要作用.卫星数据是预测热带气旋的重要手段,针对现有方法生成的卫星图像不够清晰,很难准确判断热带气旋云系的轮廓,提出了一种基于TCP-GAN的热带气旋路径预测方法.采用了生成对抗网络,并加入了感知损失,使得生成的图像更加细致.模型在不同输入图像序列长度(2、4和6)下进行试验,结果表明,当长度为4时,此时的路径误差是最小的,约为45.36 km.此外,进行了滚动预测,以验证模型在12、18和24 h的预测性能,提出的热带气旋路径预测模型生成的图像能够很好地描述云系的细致纹理结构,预测的路径误差相比于同类方法也更小.Accurate prediction of TC track plays an important role in disaster prevention and mitigation in coastal areas of China.Satellite data are an important tool for forecasting tropical cyclones.However,the satellite images generated by the existing methods are not clear enough,so that it is difficult to accurately determine the contour of the TC cloud system.To address this issue,we propose a TC track prediction model,named TCP-GAN.This model uses a generative adversarial network,and adds a new loss function to make generated images more detailed.The model is tested using different input image sequence lengths(N=2,4,and 6).The results show that the mean error is the smallest with N being 4,about 45.36 km.In addition,this paper carries out rolling forecasts to verify the forecasting performance of the model at 12,18,and 24 hours.In the study,the generated images of the proposed model can describe in detail the textures and shapes of cloud systems,and the TC prediction errors are also smaller than those of similar methods.

关 键 词:生成对抗网络 卫星云图外推 热带气旋路径预测 葵花-8 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象