机构地区:[1]浙江农林大学光机电工程学院,浙江杭州311300 [2]浙江省农作物收获装备技术重点实验室,浙江金华321016
出 处:《光谱学与光谱分析》2024年第8期2388-2394,共7页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(32001414);浙江省属高校基本科研业务费专项资金项目(2021TD002);浙江农林大学科研发展基金项目(2019FR033)资助。
摘 要:苹果清脆甘甜,物美价廉,在我国具有极高的经济价值,是苹果产区乡村振兴的特色支柱产业。霉心病是苹果主要的内部缺陷之一,极大影响苹果的品质,若未能及时剔除将不利于苹果品牌建设,严重影响苹果产业发展。利用近红外光谱技术获取苹果在不同摆放姿态和光照模式下的光谱,去趋势(Detrend)、基线校正(Baseline)、二阶导数(SD)方法对原始光谱进行预处理,应用支持向量机(SVM)方法建立苹果霉心病判别模型,分析不同摆放姿态下光照模式对霉心病检测影响,并探索不同光照模式光谱信息融合的苹果霉心病检测方法。结果表明,在单光照模式下,180°光照模式对正常苹果有较高的判别正确率,而135°光照模式对霉心病苹果有较好的识别正确率;对于单光照模式,在果梗向右姿态和135°光照模式下获得最优的SVM模型,其模型校正集的敏感性、特异性及正确率分别为1、0.9782和0.9863,预测集的敏感性、特异性及正确率分别为0.8888、0.9565和0.9375。对于不同光照模式的信息融合,大部分光照模式的信息融合能一定程度上提高苹果霉心病判别模型的性能;在果梗向右姿态下180°与135°光照模式信息融合中获得最优的SVM模型,其模型校正集的敏感性、特异性及正确率均为1,预测集的敏感性、特异性及正确率分别为0.8888、1和0.9687,与单光照模式的最优模型相比,模型性能有所提高。该研究提供了一种基于近红外光谱和不同光照模式信息融合的苹果霉心病无损识别的新思路,也可为其他水果的内部品质无损检测提供参考。Apples are crisp,sweet,and inexpensive.They have great economic value in China and are a characteristic pillar industry for rural revitalization in apple-producing areas.Moldy core disease is one of the main internal defects of apples,greatly affecting their quality.Failure to remove it promptly will be detrimental to apple branding and seriously affect the development of the apple industry.In this study,near-infrared spectroscopy was used to obtain the spectra of apples in different poses and illumination modes.Pretreatment methods such as detrending,baseline correction,and second derivative(SD)were used to pre-process the original spectra,and then a support vector machine(SVM)was used to establish a moldy core disease discrimination model for apples.Also,the effect of the illumination modes on mold core disease detection in different poses was analyzed,and the apple mold core disease detection method,by fusing the spectral information of different illumination modes,was investigated.The results indicate that in the single-illumination mode,the 180°illumination mode has a higher correct discrimination rate for regular apples,while the 135°illumination mode has a better correct identification rate for moldy core disease apples;for the single-illumination mode,the optimal SVM model is obtained in the rightward stance of the fruit pedicel and the 135°illumination mode.The model's sensitivity,specificity,and correctness in the calibration set are 1,0.9782,and 0.9863,and the sensitivity,specificity,and correctness of the prediction set are 0.8888,0.9565,and 0.9375,respectively.For the information fusion of different illumination modes,most of the information fusion of the illumination mode can improve the performance of the apple mildew discrimination model to some extent;the optimal SVM model is obtained in the information fusion of 180°and 135°illumination modes in the rightward stance of the fruit pedicel,the sensitivity,specificity,and correctness of the model in calibration set are all 1.The prediction set'
分 类 号:TS227[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...