历史文化街区的栅格矢量与电子地图智能数据采集  

Grid Vector and Electronic Map Intelligent Data Collection ofHistorical and Cultural Districts

在线阅读下载全文

作  者:李文辉 LI Wenhui(Zhejiang Institute of Science and Technology of Surveying and Mapping,Hangzhou 310030,China)

机构地区:[1]浙江省测绘科学技术研究院,浙江杭州310030

出  处:《测绘与空间地理信息》2024年第7期126-129,132,共5页Geomatics & Spatial Information Technology

摘  要:历史文化街区街道不仅传承着历史文化内涵,更承担着旅游、交通、居住等功能。针对当前我国历史文化街区地图数据智能采集,所采用的数据采集方法存在数据采集效率低、数据划分误差高、数据处理能力差等问题,提出了一种新的历史文化街区智能电子地图数据智能采集方法。该方法在栅格与矢量相结合的基础上,构建数据采集模型,完善数据采集设备。利用Web嵌入集成模式,以差分进化算法为基础设计数据检索模式,并形成地图。该方法在栅格数据的矢量化并行处理的基础上引入资源分配算法进行高精度的数据划分,对高精度数据进行分析。实验结果表明,该数据采集方法的采集效率平均为112 M/S,数据划分正确率约为94%,具有较好的自适应能力。Streets in historical and cultural compounds not only inherit historical and cultural connotations,but also undertake functions such as tourism,transportation,and residence.In view of the current intelligent collection of map data of historical and cultural com-pounds in China,the data collection methods adopted have problems such as low data collection efficiency,large data division error,and poor data processing ability.A new intelligent collection of historical and cultural compound intelligent electronic map data is pro-posed.The method,based on the combination of grid and vector,constructs a data acquisition model and improves data acquisition e-quipment.Using the Web embedded integration model,the data retrieval model is designed based on the differential evolution algo-rithm,and the map is formed.Based on the vectorized parallel processing of raster data,this method introduces a resource allocation algorithm to perform high-accuracy data division and analyzes the high-accuracy data.The experimental results show that the average collection efficiency of this data collection method is 112 M/S,the correctness of data division is about 94%,and it has good adaptive ability.

关 键 词:栅格数据 数据矢量化 地图测绘 历史文化街区 智能电子地图 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象