检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁旭 贺亚飞 王宇 LIANG Xu;HE Yafei;WANG Yu(Shaanxi Xiaobaodang Mining Co.Ltd.,Yulin 719302,China)
机构地区:[1]陕西小保当矿业有限公司,陕西榆林719302
出 处:《选煤技术》2024年第3期17-23,共7页Coal Preparation Technology
摘 要:为解决重介质选煤过程中分选密度识别易受厚尾噪声污染的问题,建立了ARX分选密度辨识模型,并利用学生式t分布建模了密度辨识系统中的厚尾噪声,而后采用期望最大化(EM)算法将厚尾噪声识别问题公式化,最后通过仿真模拟对密度及厚尾噪声辨识模型进行了验证。结果表明:用于厚尾噪声识别的EM算法与传统极大似然估计算法(MLE)相比,可有效处理隐含变量或数据丢失问题,相应偏差范数(BN)和方差范数(VN)也均低于后者,具有更佳的鲁棒性;所估计的模型参数在有限次数迭代下即可收敛于真实值附近,算法处理厚尾噪声有效。研究结果可一定程度上提升重介质选煤过程中重悬浮液密度自动检测的准确性。During the process of heavy-medium separation of coal,the identification of the separation density is likely to be contaminated by heavy-tailed noise.To address this issue,the ARX model and the student′s t distribution model are used to identify the separation density and the heavy-tailed noise involved in the separation density identification system.Then the identification procedure is turned formulized using the Expectation Maximum(EM)algorithm.The effectiveness of the separation density identification model developed based on the derived parameters is validated through simulation analysis.Analysis shows that compared with the traditional maximum likelihood estimation(MLE)method,the use of the EM algorithm with an indication of its higher robustness can effectively tackle problems regarding implicite variables and data loss;the bias norm(BN)and variance norm(VN)of the EM algorithm are all lower than those of the MLE method;the estimated model parameters derived using EM algorithm can be converged to approximately the true values after finite iteration operation,well demonstrating the effectiveness of the heavy-tailed noise identification method.The study made herein can help enhance to a certain degree the medium suspension density automatic detection accuracy in the process of heavy-medium separation of coal.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49