检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖志鹏 段克清 何锦浚 邱梓洲 王永良[2] LIAO Zhipeng;DUAN Keqing;HE Jinjun;QIU Zizhou;WANG Yongliang(School of Electronic and Communication Engineering,Sun Yat-sen University,Shenzhen 518107,China;Air Force Early Warning Academy,Wuhan 430019,China)
机构地区:[1]中山大学电子与通信工程学院,深圳518107 [2]空军预警学院,武汉430019
出 处:《雷达学报(中英文)》2024年第4期917-928,共12页Journal of Radars
基 金:雷达信号处理全国重点实验室支持计划项目(JKW202302)。
摘 要:在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。In practical settings,the efficacy of Space-Time Adaptive Processing(STAP)algorithms relies on acquiring sufficient Independent Identically Distributed(IID)samples.However,sparse recovery STAP method encounters challenges like model parameter dependence and high computational complexity.Furthermore,current deep learning STAP methods lack interpretability,posing significant hurdles in debugging and practical applications for the network.In response to these challenges,this paper introduces an innovative method:a Multi-module Deep Convolutional Neural Network(MDCNN).This network blends data-and model-driven techniques to precisely estimate clutter covariance matrices,particularly in scenarios where training samples are limited.MDCNN is built based on four key modules:mapping,data,priori and hyperparameter modules.The front-and back-end mapping modules manage the pre-and post-processing of data,respectively.During each equivalent iteration,a group of data and priori modules collaborate.The core network is formed by multiple groups of these two modules,enabling multiple equivalent iterative optimizations.Further,the hyperparameter module adjusts the trainable parameters in equivalent iterations.These modules are developed with precise mathematical expressions and practical interpretations,remarkably improving the network’s interpretability.Performance evaluation using real data demonstrates that our proposed method slightly outperforms existing small-sample STAP methods in nonhomogeneous clutter environments while significantly reducing computational time.
关 键 词:多模块深度卷积神经网络 空时自适应处理 稀疏恢复 非均匀杂波 杂波抑制
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49