A LOW-COST OPTIMIZATION APPROACH FOR SOLVING MINIMUM NORM LINEAR SYSTEMS AND LINEAR LEAST-SQUARES PROBLEMS  

在线阅读下载全文

作  者:Debora Cores Johanna Figueroa 

机构地区:[1]Defense University Center at the Spanish Naval Academy,Plaza de Espana,36920 Marin,Pontevedra,Spain [2]Departamento de Matematica,Facultad de Matematica,Pontificia Universidad Catolica de Chile,Av.Vicuna Mackenna 4860,San Joaquin,Santiago 894000,Chile

出  处:《Journal of Computational Mathematics》2024年第4期932-954,共23页计算数学(英文)

摘  要:Recently,the authors proposed a low-cost approach,named Optimization Approach for Linear Systems(OPALS)for solving any kind of a consistent linear system regarding the structure,characteristics,and dimension of the coefficient matrix A.The results obtained by this approach for matrices with no structure and with indefinite symmetric part were encouraging when compare with other recent and well-known techniques.In this work,we proposed to extend the OPALS approach for solving the Linear Least-Squares Problem(LLSP)and the Minimum Norm Linear System Problem(MNLSP)using any iterative low-cost gradient-type method,avoiding the construction of the matrices AT A or AAT,and taking full advantage of the structure and form of the gradient of the proposed nonlinear objective function in the gradient direction.The combination of those conditions together with the choice of the initial iterate allow us to produce a novel and efficient low-cost numerical scheme for solving both problems.Moreover,the scheme presented in this work can also be used and extended for the weighted minimum norm linear systems and minimum norm linear least-squares problems.We include encouraging numerical results to illustrate the practical behavior of the proposed schemes.

关 键 词:Nonlinear convex optimization Gradient-type methods Spectral gradient method Minimum norm solution linear systems Linear least-squares solution 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象