A NONLOCAL KRONECKER-BASIS-REPRESENTATION METHOD FOR LOW-DOSE CT SINOGRAM RECOVERY  

在线阅读下载全文

作  者:Jian Lu Huaxuan Hu Yuru Zou Zhaosong Lu Xiaoxia Liu Keke Zu Lin Li 

机构地区:[1]Shenzhen Key Laboratory of Advanced Machine Learning and Applications,College of Mathematics and Statistics,Shenzhen University,Shenzhen 518060,China [2]National Center for Applied Mathematics Shenzhen(NCAMS),Shenzhen 518055,China [3]Department of Industrial and Systems Engineering,University of Minnesota Twin Cities,Minneapolis,MN55455,USA [4]Department of Applied Mathematics,The Hong Kong Polytechnic University,Hong Kong SAR,China [5]School of Electronic Engineering,Xidian University,Xi'an 710071,China

出  处:《Journal of Computational Mathematics》2024年第4期1080-1108,共29页计算数学(英文)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.U21A20455,61972265,11871348);by the Natural Science Foundation of Guangdong Province of China(Grant No.2020B1515310008);by the Department of Education of Guangdong Province of China(Grant No.2019KZDZX1007);by the PolyU internal Grant No.P0040271;by the Pazhou Laboratory,Guangzhou,China(Grant No.PZL2021KF0017);by the Guangdong Key Laboratory of Intelligent Information Processing,China.

摘  要:Low-dose computed tomography(LDCT)contains the mixed noise of Poisson and Gaus-sian,which makes the image reconstruction a challenging task.In order to describe the statistical characteristics of the mixed noise,we adopt the sinogram preprocessing as a stan-dard maximum a posteriori(MAP).Based on the fact that the sinogram of LDCT has non-local self-similarity property,it exhibits low-rank characteristics.The conventional way of solving the low-rank problem is implemented in matrix forms,and ignores the correlations among similar patch groups.To avoid this issue,we make use of a nonlocal Kronecker-Basis-Representation(KBR)method to depict the low-rank problem.A new denoising model,which consists of the sinogram preprocessing for data fidelity and the nonlocal KBR term,is developed in this work.The proposed denoising model can better illustrate the generative mechanism of the mixed noise and the prior knowledge of the LDCT.Nu-merical results show that the proposed denoising model outperforms the state-of-the-art algorithms in terms of peak-signal-to-noise ratio(PSNR),feature similarity(FSIM),and normalized mean square error(NMSE).

关 键 词:Low-dose computed tomography Kronecker-basis-representation Low-rank imation.Noise-generating-mechanism 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象