检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jian Lu Huaxuan Hu Yuru Zou Zhaosong Lu Xiaoxia Liu Keke Zu Lin Li
机构地区:[1]Shenzhen Key Laboratory of Advanced Machine Learning and Applications,College of Mathematics and Statistics,Shenzhen University,Shenzhen 518060,China [2]National Center for Applied Mathematics Shenzhen(NCAMS),Shenzhen 518055,China [3]Department of Industrial and Systems Engineering,University of Minnesota Twin Cities,Minneapolis,MN55455,USA [4]Department of Applied Mathematics,The Hong Kong Polytechnic University,Hong Kong SAR,China [5]School of Electronic Engineering,Xidian University,Xi'an 710071,China
出 处:《Journal of Computational Mathematics》2024年第4期1080-1108,共29页计算数学(英文)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.U21A20455,61972265,11871348);by the Natural Science Foundation of Guangdong Province of China(Grant No.2020B1515310008);by the Department of Education of Guangdong Province of China(Grant No.2019KZDZX1007);by the PolyU internal Grant No.P0040271;by the Pazhou Laboratory,Guangzhou,China(Grant No.PZL2021KF0017);by the Guangdong Key Laboratory of Intelligent Information Processing,China.
摘 要:Low-dose computed tomography(LDCT)contains the mixed noise of Poisson and Gaus-sian,which makes the image reconstruction a challenging task.In order to describe the statistical characteristics of the mixed noise,we adopt the sinogram preprocessing as a stan-dard maximum a posteriori(MAP).Based on the fact that the sinogram of LDCT has non-local self-similarity property,it exhibits low-rank characteristics.The conventional way of solving the low-rank problem is implemented in matrix forms,and ignores the correlations among similar patch groups.To avoid this issue,we make use of a nonlocal Kronecker-Basis-Representation(KBR)method to depict the low-rank problem.A new denoising model,which consists of the sinogram preprocessing for data fidelity and the nonlocal KBR term,is developed in this work.The proposed denoising model can better illustrate the generative mechanism of the mixed noise and the prior knowledge of the LDCT.Nu-merical results show that the proposed denoising model outperforms the state-of-the-art algorithms in terms of peak-signal-to-noise ratio(PSNR),feature similarity(FSIM),and normalized mean square error(NMSE).
关 键 词:Low-dose computed tomography Kronecker-basis-representation Low-rank imation.Noise-generating-mechanism
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.100.3