检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈梓诣 班文超 Shen Ziyi;Ban Wenchao(School of Ocean Engineering Equipment,Zhejiang Ocean University,Zhoushan 316000)
机构地区:[1]浙江海洋大学海洋工程装备学院,舟山316000
出 处:《气象科技进展》2024年第3期62-67,共6页Advances in Meteorological Science and Technology
摘 要:月降水量的精确预测对于国民生产、防灾减灾有重大意义,然而单独的模型难以完成准确预测降水的任务。本文把自适应噪声完备集合经验模态分解(CEEMDAN)分别与误差反向传播模型(BP)和长短期记忆神经网络(LSTM)结合起来,以兰州市降水数据为例,与单一的LSTM模型、差分整合移动平均自回归模型(ARIMA)和BP模型的性能进行比较。结果表明,两个复合模型有效提高了观测值和预测值的拟合度,克服了峰值预测精度不高的问题,显著优于对比模型。Accurate forecasting of monthly precipitation is of great significance for national production as well as disaster prevention and mitigation.However,it is difficult for a single model to complete the task of accurate precipitation prediction.We combine CEEMDAN with the error reverse communication model(BP)and with the long short-term memory neural network(LSTM),respectively.And we compare Lanzhou's precipitation data with the precipitation predictions with a single LSTM model,ARIMA model and BP model.The research results show that the two composite models effectively improve the fitting of observation values and prediction values.Thus,the problem of low accuracy in peak prediction is overcomed,showing significantly higher performance than the comparative models.
关 键 词:兰州市 月降水量 预测 CEEMDAN LSTM ARIMA BP
分 类 号:P4[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49