数字经济对碳排放的非线性影响研究  被引量:1

Research on the Nonlinear Impact of Digital Economy on Carbon Emissions

在线阅读下载全文

作  者:聂少佩 Nie Shaopei(Shanghai University of International Business and Economics,Shanghai 201620)

机构地区:[1]上海对外经贸大学,上海201620

出  处:《中国商论》2024年第14期43-47,共5页China Journal of Commerce

摘  要:数字经济是推动我国经济高质量发展的重要组成部分,随着数字经济规模不断扩大,基于我国2013—2020年30个省份面板数据,通过熵权法等方法构建数字经济发展指数和碳排放总量。该领域产生的环境影响,尤其是碳排放问题引起各界关注。但是目前数字经济对碳排放的影响尚不明确,本文旨在探究数字经济发展与碳排放的内在联系,促进“双碳”政策下实现数字经济高速发展。同时文章运用门限模型,分析数字经济发展综合测度以其二级指标与碳排放总量间的非线性关系,结果表明:数字经济发展水平越高,抑制碳排放效果越强;数字化基础和数字化应用对碳排放的影响呈现倒“V”型关系。此外文章还使用了固定效应对模型进行稳健性分析,说明模型具有较高的准确性和较强的解释力。Digital economy is a crucial component in driving the high-quality development of China's economy.As the scale of the digital economy continues to expand,the environmental impacts it generates,especially carbon emissions,have drawn widespread attention.However,the impact of the digital economy on carbon emissions remains unclear.Based on panel data from 30 provinces in China from 2013 to 2020,this study constructs indices for digital economy development and total carbon emissions using methods such as entropy weight method.The aim is to explore the intrinsic relationship between digital economy development and carbon emissions,thereby promoting high-speed development of the digital economy under the"dual carbon"policies.Furthermore,the article employs a threshold model to analyze the nonlinear relationship between the comprehensive measures of digital economy development and its secondary indicators with total carbon emissions.The results indicate that higher levels of digital economy development are associated with stronger effects in reducing carbon emissions,and that the impact of digital infrastructure and digital applications on carbon emissions follows an inverted"U"shape.Additionally,the article uses fixed-effects models for robustness checks,demonstrating that the model has high accuracy and strong explanatory power.

关 键 词:数字经济 碳排放 熵权法 门限模型 非线性关系 

分 类 号:F205[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象