检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞军恒 黄炜楠 董胜[1] Pang Junheng;Huang Weinan;Dong Sheng(College of Engineering,Ocean University of China,Qingdao 266404,China)
出 处:《太阳能学报》2024年第7期121-127,共7页Acta Energiae Solaris Sinica
基 金:国家自然科学基金(52171284)。
摘 要:利用改进的完全集合经验模态分解(ICEEMDAN)和递归量化分析方法设计一种新的信号分解算法(DSD),该算法将原始信号分解为确定性成分和随机性成分。考虑风速、风向对波高的影响前提下,将DSD算法与长短时记忆网络(LSTM)结合建立多变量混合模型DSD-LSTM-m进行有效波高的预测。该模型与单独的LSTM模型相比明显提高了预测精度,与单变量混合模型DSD-LSTM-u相比具有更好的预测效果。A new signal decomposition algorithm(DSD)is designed by using the ICEEMDAN and recursive quantification analysis method,which divides the original signal into deterministic and stochastic components.Considering the influence of wind speed and wind direction on wave height,a multi-variable DSD-LSTM model was established by combining DSD algorithm with Long and Short-Term Memory network(LSTM)to predict significant wave height.The proposed model significantly improved the prediction accuracy compared to the single LSTM model and has better prediction performance compared to the univariate hybrid model DSD-LSTM-u.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179