检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马中伟 王涣 Zhongwei Ma;Huan wang(Guizhou Nonferrous Geological Engineering Survey Company,Guiyang,Guizhou 550002,China)
机构地区:[1]贵州有色地质工程勘察公司,贵州贵阳550002
出 处:《产业科技创新》2024年第3期75-78,共4页Industrial Technology Innovation
摘 要:本文综合介绍了基于人工智能的岩土勘察图像处理与识别技术,包括图像识别与分类、特征提取、目标检测、实时监测、数据驱动方法、多模态融合和弱监督学习等方面的关键技术。通过引入卷积神经网络和深度学习模型,这些技术提高了勘察效率、准确性,并支持实时监测与预警。多模态数据融合和弱监督学习解决了数据不足和多源信息整合的问题。这些应用降低了人为成本,为岩土工程提供了智能化、高效、可靠的地质信息获取手段。This paper provides a comprehensive overview of artificial intelligence-based image processing and recognition technologies in geotechnical investigation,encompassing key techniques such as image recognition and classification,feature extraction,object detection,real-time monitoring,data-driven methods,multimodal fusion,and weak supervision learning.By introducing convolutional neural networks and deep learning models,these technologies enhance the efficiency and accuracy of investigations,while also supporting real-time monitoring and early warning.Multimodal data fusion and weak supervision learning address issues of data scarcity and multi-source information integration.These applications reduce human costs and offer intelligent,efficient,and reliable means of acquiring geological information for geotechnical engineering.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171