检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tian Cao Xuyin Ding Qiwen Peng Min Zhang Guoyue Shi
出 处:《Chinese Chemical Letters》2024年第7期227-234,共8页中国化学快报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.22274053 and 22274051);the Shanghai Municipal Science and Technology Major Project(“Beyond Limits Manufacture”)。
摘 要:Herein,we unveil the intelligent detection of multiple catechol isomers in complex environments utilizing both laser-induced graphene(LIG)and artificial neural network(ANN).The large scale-up manufacturing of LIG-based sensors(LIGS)with three-electrode configuration on polyimide(PI)is achieved by direct laser-writing and screen-printing technologies.Our LIGS shows excellent electrochemical performance toward catechol isomers,i.e.,hydroquinone(1,4-dihydroxybenzene,HQ),catechol(1,2-dihydroxybenzene,CT),and resorcinol(1,3-dihydroxybenzene,RC),with a low limit of detection(LOD)(CC,0.079μmol/L;HQ,0.093μmol/L;RC,1.18μmol/L).Moreover,the ANN model is developed for machine-intelligent to predict concentrations of catechol isomers under an interfering environment via a single LIGS.Using six unique parameters extracted from the differential pulse voltammetry(DPV)response,the machine learning-based regression provides a coefficient of correlation with 0.998 and is able to correctly predict the total and individual concentrations in complex river samples.Hence,this work provides a guide for the preparation and application of LIGS via facile and cost-efficient mass production and the development of an intelligent sensing platform based on the ANN model.
关 键 词:Laser-induced graphene Phenolic pollutants Electrochemical detection Artificial neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.250.166