检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋玉 王宇辉[1] 张又升 Song Yu;Wang Yuhui;Zhang Yousheng(Beijing University of Chemical Technology,Beijing 100029,China;Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;National Key Laboratory of Computational Physics,Beijing 100088,China;Center for Applied Physics and Technology,Peking University,Beijing 100871,China)
机构地区:[1]北京化工大学,北京100029 [2]北京应用物理与计算数学研究所,北京100094 [3]计算物理全国重点实验室,北京100088 [4]北京大学应用物理与技术研究中心,北京100871
出 处:《气动研究与试验》2024年第4期70-81,共12页Aerodynamic Research & Experiment
摘 要:激波再冲击Richtmyer-Meshkov(RM)湍流混合现象广泛存在于各类自然现象和工程问题中。混合宽度作为刻画RM混合演化最基础的物理量,影响其再冲击后演化的再冲击时间、马赫数等关键物理量已被探明,但定量依赖关系尚存争议。导致上述现状的一个原因在于现有再冲击RM混合实验和模拟方案,难以做到仅让某单一依赖变量孤立变化,导致确定定量关系的难度增加。为此,本文通过取消传统再冲击RM激波管中用于反射激波的固壁,改为一个能自由产生入射激波的开口端,设计了一种新型的再冲击RM混合激波管。新型激波管可通过改变两个入射激波的距离和强度,实现再冲击马赫数和时间的精准可控。本文在描述新型激波管全过程演化的基础上,结合冲击波关系式、等熵波关系式和接触界面相容关系,给出了全过程中各运动学和热力学量的详细理论计算公式。最后,基于这些理论关系和数值模拟,对Leinov等研究的再冲击RM混合实验进行了再评估。发现在某些工况下,实验数据与理论预测存在一定偏差,这可能暗示了关键数据测量中的潜在误差,研究结果为未来的实验和数值模拟提供了参考。Reshocked Richtmyer-Meshkov(RM)turbulent mixing phenomenon is widely present in various natural phenomena and engineering problems.The mixing width,as the most fundamental physical quantity for characterizing the evolution of reshocked RM mixing,has been found to be influenced by key physical quantities such as reshock time and Mach number.However,the quantitative dependence relationship between these variables remains controversial.One reason for the above situation is that the existing experiment and simulation schemes for reshocked RM mixing are dificult to achieve isolated changes of only a single dependent variable,which increases the difficulty of determining quantitative relationships.Therefore,this study designed a new type of reshock RM mixing shock tube.It eliminates the fixed wall used for reflecting shock waves in traditional shock tubes and replacing it with an open end that can freely generate incident shock waves.The new shock tube can achieve precise and controllable reshock Mach number and time by changing the distance and intensity of two incident shock waves.This article describes the entire process evolution of the new shock tube.By combining the shock relations,isentropic relations,and contact discontinuity compatibility relations,we establishes theoretical formulas for various kinematic and thermodynamic quantities throughout the entire process.Finally,Leinov's reshock RM mixing experiment was re-evaluated based on these theoretical relationships and numerical simulations.It was discovered that some test data under certain operating conditions did not conform to the theoretical relationships,suggesting possible measurement errors in key data corresponding to those conditions.The results provide reference for future experiments and numerical simulations.
关 键 词:RICHTMYER-MESHKOV 激波 再冲击 湍流混合 数值模拟
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.207.23