基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用  

Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation

在线阅读下载全文

作  者:方泽 潘泳全 戴栋[1] 张俊勃 Fang Ze;Pan Yong-Quan;Dai Dong;Zhang Jun-Bo(School of Electric Power,South China University of Technology,Guangzhou 510641,China)

机构地区:[1]华南理工大学电力学院,广州510641

出  处:《物理学报》2024年第14期155-166,共12页Acta Physica Sinica

基  金:国家自然科学基金(批准号:52377145)资助的课题.

摘  要:近年来,以物理信息神经网络(PINNs)为代表的人工智能计算范式在等离子体数值模拟领域获得了极大关注,但相关研究考虑的等离子体化学体系较为简化,且基于PINNs求解更为复杂的多粒子低温等离子体流体模型的研究还尚处空白.本文提出了一个通用的PINNs框架(源项解耦PINNs,Std-PINNs),用于求解多粒子低温等离子体流体模型.Std-PINNs通过引入等效正离子,并将电流连续性方程替代各粒子输运方程作为物理约束,实现了重粒子输运方程源项与电子密度、平均电子能量的解耦,极大降低了训练复杂度.本文通过两个经典放电案例(低气压氩气辉光放电、大气压氦气辉光放电)展示了Std-PINNs在求解多粒子低温等离子体流体模型的应用,并将结果与传统PINNs和有限元(FEM)模型进行了对比.结果显示,传统PINNs输出了完全错误的训练结果,而Std-PINNs与FEM结果之间的L2相对误差能达到约10–2量级,由此验证了Std-PINNs在模拟多粒子等离子体流体模型的可行性.Std-PINNs为低温等离子体模拟提供了新的思路,并拓展了深度学习方法在复杂物理系统建模中的应用.In recent years,the artificial intelligence computing paradigm represented by physics-informed neural networks(PINNs)has received great attention in the field of plasma numerical simulation.However,the plasma chemical system considered in related research is relatively simplified,and the research on solving the more complex multi-particle low-temperature fluid model based on PINNs is still blank.In more complex chemical systems,the coupling relationship between particle densities and between particle densities and mean electron energy become more intricate.Therefore,the applicability of PINNs in dealing with sophisticated reaction systems needs further exploring and improving.In this work,we propose a general PINN framework(source term decoupled PINNs,Std-PINNs)for solving multi-particle low-temperature plasma fluid model.By introducing equivalent positive ions and replacing each particle transport equation with the current continuity equation as a physical constraint,Std-PINN splits the entire solution process into the training processes of two neural networks,realizing the decoupling of the source term of the heavy particle transport equation from the electron density and mean electron energy,which greatly reduces the complexity of neural network training.In this work,the application of Std-PINNs to solving multi-particle low-temperature plasma fluid models is demonstrated through two classic discharge cases with different complexity of reaction systems(low-pressure argon glow discharge and atmospheric-pressure helium glow discharge)and the performance of Std-PINN is compared with that of conventional PINN and finite element method(FEM).The results show that the training results output from the traditional PINN are completely incorrect due to the strong coupling correlation of each physical variable through the source terms of each particle transport equation,while the L2 relative error between Std-PINN and FEM results can reach up to~10–2,thus verifying the feasibility of Std-PINN in simulating multi-particl

关 键 词:物理信息神经网络 低温等离子体 源项解耦 流体模型 

分 类 号:O53[理学—等离子体物理] TP183[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象