检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨栋超 易立志 丁林杰 刘敏 朱丽娅 许云丽 何雄 沈顺清[3] 潘礼庆 John Q.Xiao Yang Dong-Chao;Yi Li-Zhi;Ding Lin-Jie;Liu Min;Zhu Li-Ya;Xu Yun-Li;He Xiong;Shen Shun-Qing;Pan Li-Qing;John Q.Xiao(Hubei Engineering Research Center of Weak Magnetic-field Detection,College of Science,China Three Gorges University,Yichang 443002,China;Department of Physics,Chongqing Three Gorges University,Chongqing 404100,China;Department of Physics,University of Hong Kong,Hong Kong 999077,China;Department of Physics and Astronomy,University of Delaware,Newark 19716,USA)
机构地区:[1]三峡大学理学院,湖北省弱磁探测工程技术研究中心,宜昌443002 [2]三峡学院物理系,重庆404100 [3]香港大学物理系,中国香港999077 [4]Department of Physics and Astronomy,University of Delaware,Newark 19716,USA
出 处:《物理学报》2024年第14期214-221,共8页Acta Physica Sinica
基 金:国家自然科学基金(批准号:12274258);美国国家科学基金(批准号:DMR1505592)资助的课题
摘 要:玻色子体系中的非平衡输运过程研究是极具挑战性的工作.磁振子是玻色子,具有与电子等费米子截然不同的自旋输运行为.本文以钇铁石榴石(YIG)铁磁绝缘体为研究对象,聚焦影响稳态下YIG中磁振子非平衡输运过程的关键因素.通过将具有非零化学势μm的玻色-爱因斯坦统计函数引入到玻尔兹曼输运方程中,获得了以为幂次的输运方程严格解析表达式(当α(=-μm/(k_(B)T))<1时).结果显示,当α<<1时,我们得到了与以往研究不同的化学势μm与非平衡粒子浓度δn_(m)之间的非线性关系δn_(m)∝-α^(1/2)α-(-μm)^(1/2)α;较大时,则还须考虑其高阶项.正因这种非线性关系,导致磁振子扩散方程显著不同于电子自旋扩散特性,其由线性微分方程演变为更复杂的非线性微分方程.本文重点研究了在两种极端温度梯度(即■T~1K/mm和10^(4)K/mm)下非平衡磁振子浓度δn_(m)和化学势μm的空间分布,它们分别对应于μm的值约为-0.1μeV和-6.2meV,均满足前提条件α<1.在远离平衡态的大温度梯度分布下,本文理论计算与实验结果吻合很好.这些理论研究结果将加深人们对铁磁绝缘体中磁振子非平衡输运行为的认识.Understanding nonequilibrium transport phenomena in bosonic systems is highly challenging.Magnons,as bosons,exhibit different transport behavior from fermionic electron spins.This study focuses on the key factors influencing the nonequilibrium transport of magnons in steady states within magnetic insulators by taking Y_(3)Fe_(5)O_(12)(YIG)for example.By incorporating the Bose-Einstein distribution function with a non-zero chemical potential into the Boltzmann transport equation,analytical expressions for transport parameters in power ofα(=-μm/(k_(B)T))are obtained under the conditionα<1.It is the biggest different from previous researches that our theory establishes a nonlinear relationship between the chemical potential and the nonequilibrium particle densityδn_(m)∝-α^(1/2)α-(-μm)^(1/2)αfor magnons underα<<1.For a large chemical potential,higherorder terms ofαmust be taken into account.Owing to this nonlinear relationship,the magnon diffusion equation markedly differs from that governing electron spin,which evolves into more complex nonlinear differential equation.We specifically focus on the ferrimagnetic insulator YIG by making a comparison of the spatial distribution of the nonequilibrium magnon densityδn_(m)and chemical potentialμm between two extreme temperature gradients,namely,■T~1K/mm and 10^(4)K/mm,which correspond toμm values on the order of-0.1μeV and-6.2meV,respectively,while still satisfying the prerequisiteα<1.Given the known temperature gradient distribution,the nonequilibrium magnon densityδn_(m)calculated based on our theory is in good agreement with the experimental result.Our theoretical and numerical findings greatly contribute to a profound understanding of the nonequilibrium magnon transport characteristics in magnetic insulators.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30