检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈硕 栾小丽[1] 刘飞[1] CHEN Shuo;LUAN Xiaoi;LIU Fei(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《控制工程》2024年第7期1280-1285,共6页Control Engineering of China
基 金:国家自然科学基金资助项目(61991402,61833007,61991400)。
摘 要:为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。In order to improve the accuracy of fault detection,a fault detection method based on dynamic controlled principal component analysis(DCPCA)model is proposed.Firstly,DCPCA is used to extract the dynamic controlled principal component(DCPC),and the DCPC contains the autoregressive characteristics of the process and the dynamic causal relationship with the control input,which makes the DCPCA model accurate.Then,to solve the problem that traditional methods only detect the static spatial structure faults of process variables and ignore the dynamic characteristics,a comprehensive detection indicator is applied based on the DCPCA model to detect both static reconstruction errors and dynamic model errors in time,so that the detection results are more comprehensive.Finally,simulation results based on Tennessee-Eastman(TE)process verify the feasibility and effectiveness of the proposed method.
关 键 词:动态受控主元分析 故障检测 综合指标 静态重构误差 动态模型误差
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44