基于动态受控主元分析模型的故障检测  

Fault Detection Based on Dynamic Controlled Principal Component Analysis Model

在线阅读下载全文

作  者:陈硕 栾小丽[1] 刘飞[1] CHEN Shuo;LUAN Xiaoi;LIU Fei(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)

机构地区:[1]江南大学物联网工程学院,江苏无锡214122

出  处:《控制工程》2024年第7期1280-1285,共6页Control Engineering of China

基  金:国家自然科学基金资助项目(61991402,61833007,61991400)。

摘  要:为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。In order to improve the accuracy of fault detection,a fault detection method based on dynamic controlled principal component analysis(DCPCA)model is proposed.Firstly,DCPCA is used to extract the dynamic controlled principal component(DCPC),and the DCPC contains the autoregressive characteristics of the process and the dynamic causal relationship with the control input,which makes the DCPCA model accurate.Then,to solve the problem that traditional methods only detect the static spatial structure faults of process variables and ignore the dynamic characteristics,a comprehensive detection indicator is applied based on the DCPCA model to detect both static reconstruction errors and dynamic model errors in time,so that the detection results are more comprehensive.Finally,simulation results based on Tennessee-Eastman(TE)process verify the feasibility and effectiveness of the proposed method.

关 键 词:动态受控主元分析 故障检测 综合指标 静态重构误差 动态模型误差 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象