检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张军[1] 魏继桢 沈凡凡 谭海 何炎祥[3] ZHANG Jun;WEI Jizhen;SHEN Fanfan;TAN Hai;HE Yanxiang(School of Information Engineering,East China University of Technology,Nanchang 330013,China;School of Information Engineering,Nanjing Audit University,Nanjing 211815,China;Computer School,Wuhan University,Wuhan 430072,China)
机构地区:[1]东华理工大学信息工程学院,江西南昌330013 [2]南京审计大学信息工程学院,江苏南京211815 [3]武汉大学计算机学院,湖北武汉430072
出 处:《实验技术与管理》2024年第7期87-93,共7页Experimental Technology and Management
基 金:国家自然科学基金项目(62162002,61662002,61902189);江西省自然科学基金项目(20212BAB202002);江苏省高等学校基础科学(自然科学)研究项目(22KJA520004)。
摘 要:该文介绍了基于GPGPU-sim的多kernel环境下GPGPU性能优化实验方法,旨在为初学者开展多kernenl场景下GPGPU性能优化研究提供实验方法参考,也能为计算机系统结构教学提供案例。文中重点分析讨论了基于GPGPU-sim模拟器、多kernel场景下的一种自适应线程块调度方法的改进思想、实验方法及过程,还对GPGPU的微系统结构、GPGPU-sim模拟器及源代码结构进行了介绍。实验结果表明,该文阐述的实验方法可行,相对于基准方法,该文提出的改进策略可以提升多kernel场景下GPGPU的执行效率。[Objective]With the rapid development and continuous improvement of the parallel computing architecture of general-purpose graphics processing units(GPGPUs),their computing power has been significantly improved,making them essential in high-performance and high-throughput applications.However,as tasks increase in number and complexity,multi-kernel execution environments face serious challenges.Therefore,optimizing GPGPU performance in multi-kernel environments is crucial.Scholars often use GPGPU-sim as the main tool for studying GPGPU performance optimization methods.Despite this,there is currently no comprehensive guide for conducting GPGPU performance optimization experiments using GPGPU-sim in multi-kernel environments,posing difficulties for beginners in experimental verification and analysis in this area.Furthermore,while the round-robin(RR)scheduling strategy ensures fair resource utilization,it may lead to scheduling delays between multiple kernels in concurrent execution environments.This study aims to provide key experimental methods for beginners to optimize GPGPU performance in multi-kernel concurrent execution environments and offer valuable case references for teaching computer architecture.[Methods]First,the article provides a detailed introduction to the GPGPU architecture and explores the source code structure of the GPGPU-sim simulator,providing readers with relevant background knowledge.It then comprehensively analyzes and discusses the improvement ideas and adaptive thread block(ATB)algorithm of the proposed ATB scheduling strategy.The article elaborates on the process of modifying the GPGPU-sim source code to implement the ATB strategy scheduling of multi-kernel thread block execution.In addition,to ensure that beginners can easily replicate the relevant experiments,the article provides a detailed explanation of the configuration parameters of GPGPU-sim and modifications to the testing program.[Results]This article compares the ATB strategy with the benchmark RR thread block scheduling method,
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170