融合生成对抗网络与SRTM的ASTER GDEM数据重建  

Integration of Generative Adversarial Networks and SRTM for Reconstruction of ASTER GDEM Data

在线阅读下载全文

作  者:陈智[1] 许捍卫[1] 衡雪彪 韩森 李勇[2] CHEN Zhi;XU Hanwei;HENG Xuebiao;HAN Sen;LI Yong(College of Geography and Remote Sensing,Hohai University,Nanjing 211100;School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China)

机构地区:[1]河海大学地理与遥感学院,江苏南京211100 [2]河海大学地球科学与工程学院,江苏南京211100

出  处:《地理与地理信息科学》2024年第4期15-20,共6页Geography and Geo-Information Science

基  金:国家自然科学基金面上项目(41977394)。

摘  要:航拍死角、匹配偏差、点位不足、云雾遮盖等易使数字高程模型(DEM)存在数据异常。鉴于光学立体摄影测量获得的ASTER GDEM受天气因素影响大,雷达测量得到的SRTM DEM受地形起伏因素影响大,为提高ASTER GDEM数据的质量,该文构建一种多源多尺度残差连接门控卷积生成对抗网络(Multi-Source and Multi-Scale Residual-Connected Gated Convolutional Generative Adversarial Network, MSSRGC-GAN),利用SRTM DEM数据辅助重建ASTER GDEM中异常数据,并以实验区范围内多组不同地貌的ASTER GDEM样本数据重建为例,对模型进行定量评价。结果显示:重建数据RRMSE小于0.06,R~2大于0.9,PSNR大于60,SSIM在0.999 5以上,优于反距离插值法和SRTM镶嵌法等传统方法以及无门控卷积模型和无空洞卷积模型等深度学习方法。Digital elevation models(DEMs)frequently exhibit data anomalies attributable to various factors,including occlusions present in aerial photography,discrepancies from matching errors,sparse point coverage,and interference from cloud cover.The advanced spaceborne thermal emission and reflection radiometer global digital elevation model(ASTER GDEM),derived through optical stereophotogrammetry,is significantly affected by weather-related variables.Conversely,the shuttle radar topography mission(SRTM)digital elevation model(DEM),which is generated from radar-based surveys,is predominantly influenced by the topographic relief of the terrain.In order to improve the quality of ASTER GDEM data,a multi-source and multi-scale residual-connected gated convolutional generative adversarial network(MSSRGC-GAN)is constructed.This model leverages SRTM DEM data to assist in reconstructing the abnormal data in ASTER GDEM.In order to quantitatively assess the model outcomes,multiple sets of ASTER GDEM sample data with different terrains within the validation area were reconstructed.The reconstructed data yielded RRMSE below 0.06,R 2 above 0.9,PSNR above 60,and SSIM above 0.9995.This performance surpasses that of conventional techniques such as inverse distance interpolation and SRTM mosaicking,as well as deep learning methods including the ungated convolutional model and the non-dilated convolutional model.

关 键 词:ASTER GDEM SRTM DEM 数据重建 深度学习 MSSRGC-GAN 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象