检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙海云 尹沛然 钱鹏[1] SUN Hai-yun;YIN Pei-ran;QIAN Peng(Blood Purification Center,The Second Affiliated Hospital of Soochow University,Suzhou 215000,China;Department of Nephrology,The Second Affiliated Hospital of Soochow University,Suzhou 215000,China)
机构地区:[1]苏州大学附属第二医院血液净化中心,苏州215000 [2]苏州大学附属第二医院肾内科,苏州215000
出 处:《中国血液净化》2024年第7期529-533,共5页Chinese Journal of Blood Purification
基 金:苏州市科技计划项目(SYS2020132)。
摘 要:目的基于Lasso-Nomogram模型构建维持性血液透析(maintenance hemodialysis,MHD)患者睡眠障碍(sleep disorder,SD)的预测模型。方法选取苏州大学附属第二医院行MHD的慢性肾衰竭(chronic renal failure,CRF)患者,根据MHD后6个月是否发生SD分为SD组和非SD组。比较2组临床资料,分析SD发生的影响因素,根据预测因素构建SD的Nomogram预测模型。结果198例CRF患者MHD后第6个月92例患者发生SD,SD发生率为46.46%;Logistic分析显示年龄(OR=2.152,95%CI:1.246~3.718,P<0.001)、皮肤瘙痒(OR=6.209,95%CI:2.051~18.796,P<0.001)、抑郁(OR=3.715,95%CI:1.531~9.013,P<0.001)、尿素清除指数(urea clearance index,Kt/V)(OR=0.302,95%CI:0.154~0.592,P<0.001)、血磷(OR=2.274,95%CI:1.236~4.185,P<0.001)、钙磷乘积(OR=3.210,95%CI:1.517~6.792,P<0.001)、血清合肽素(OR=6.816,95%CI:2.317~20.048,P<0.001)、α-淀粉酶(OR=5.277,95%CI:1.953~14.257,P<0.001)、25羟维生素D3(OR=0.381,95%CI:0.186~0.780,P<0.001)均为SD发生的影响因素;根据Lasso、Logistic分析筛选出上述9个指标构建SD的Nomogram预测模型,该模型预测MHD患者发生SD的曲线下面积(AUC)为0.928(95%CI:0.892~0.963),预测敏感度、特异度分别为81.13%、90.11%。结论根据MHD患者发生SD的因素构建Nomogram预测模型,在预测SD发生风险方面具有较高预测效能和良好临床效用。Objective To construct a prediction model of sleep disorder(SD)in patients with maintenance hemodialysis(MHD)based on Lasso-Nomogram model,and to verify the efficacy of the prediction model.Methods A total of 198 patients with chronic renal failure(CRF)who underwent MHD in our hospital were selected and categorized into SD and non-SD groups according to whether SD occurred 6 months after MHD.We compared the clinical data of the two groups,analyzed the influencing factors for SD,and constructed a nomogram prediction model of SD according to the predictive factors.Results In the sixth month after MHD,92 CRF patients developed SD,with the SD incidence of 46.46%(92/198).Logistic analysis showed that age(OR=2.152,95%CI:1.246~3.718),skin itching(OR=6.209,95%CI:2.051~18.796),depression(OR=3.715,95%CI:1.531~9.013),urea clearance index(Kt/V)(OR=0.302,95%CI:0.154~0.592),blood phosphorus(OR=2.274,95%CI:1.236~4.185),calcium and phosphorus product(OR=3.210,95%CI:1.517~6.792),serum copeptin(OR=6.816,95%CI:2.317~20.048),α-amylase(OR=5.277,95%CI:1.953~14.257),and 25-(OH)D3(OR=0.381,95%CI:0.186~0.780)were the influencing factors for SD(P<0.001).A nomogram prediction model of SD was constructed based on the nine indicators screened by Lasso and logistic analyses.Using this model,the area under the curve(AUC)for the occurrence of SD in CRF patients with MHD was 0.928(95%CI:0.892~0.963),with the prediction sensitivity and specificity of 81.13%and 90.11%respectively.Conclusion This nomogram prediction model of SD in CRF patients with MHD based on the influencing factors for SD has higher predictive efficacy and better clinical effect in predicting SD risk.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.221.222