基于MOPSO算法改进的异常点检测方法  

Outlier detection model modified based on MOPSO algorithm

在线阅读下载全文

作  者:高勃 柴学科 朱明皓[2] GAO Bo;CHAI Xueke;ZHU Minghao(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;School of Economics and Management,Beijing Jiaotong University,Beijing 100044,China)

机构地区:[1]北京交通大学计算机与信息技术学院,北京100044 [2]北京交通大学经济管理学院,北京100044

出  处:《计算机集成制造系统》2024年第7期2319-2327,共9页Computer Integrated Manufacturing Systems

基  金:国家自然科学基金资助项目(62172033)。

摘  要:挖掘工业大数据的隐含价值是智能制造的一个重要研究方向,针对工业大数据特点开展异常点检测是实现数据分析的前提。首先,介绍了工业大数据异常点检测解决的主要问题,提出相关定义。其次,基于多目标粒子群算法(MOPSO),提出一种工业大数据异常点检测的改进DBSCAN模型,介绍了模型的算法设计思想、算法步骤,完成了算法伪代码的编写,并提出了算法时间复杂度的计算方法。最后,通过某电芯工厂制造数据,进行了模型仿真与实验,经实验验证,所提模型提高了工业大数据异常点检测的准确率,为数据挖掘在工业异常点检测中的应用提供了参考。Mining the implied value of industrial big data is an important research direction of intelligent manufacturing,and carrying out outlier detection is a prerequisite for realizing data analysis.The main problems addressed by industrial big data anomaly detection were introduced,and the relevant definitions in this paper were proposed.Based on the Multi-Objective Particle Swarm Optimization algorithm(MOPSO),an improved DBSCAN model for industrial big data outlier detection was proposed.The algorithm design idea and algorithm steps of the model were introduced,the pseudo-code of the algorithm was completed,and the calculation the time complexity of the algorithm was proposed.The model simulation and experiments were carried out by using the manufacturing data of an electric core factory,and it was verified that the proposed model could improve the accuracy of industrial big data outlier detection.This paper provided a reference for the application of data mining in industrial outlier detection.

关 键 词:工业大数据 异常点检测 多目标粒子群算法 DBSCAN模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TP274[自动化与计算机技术—计算机科学与技术] TP301.6

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象