检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张建伟 刘瑾[1] 杨海马[2] 曾国辉[1] 邢季 张锐 ZHANG Jianwei;LIU Jin;YANG Haima;ZENG Guohui;XING Ji;ZHANG Rui(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620 [2]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《武汉大学学报(理学版)》2024年第3期281-292,共12页Journal of Wuhan University:Natural Science Edition
基 金:科技部科技创新2030“新一代人工智能”重大项目(2020AAA0109300)。
摘 要:工业领域数据由于其非结构化、领域特定性和数据稀缺性等特点,传统的中文命名实体识别技术在工业领域的应用并不理想。本文以汽车产业数据为依托,提出一种将标签语义与字形拼音信息相融合的自注意网络算法,结合字符级和标签级特征进行多维特征提取。模型引入自注意机制获得文本长距离依赖关系,将分词特征整合到字符级,并结合标签语义特征的上下文进行预测,提高了字符词边界的识别性能。在一定程度上解决了词边界分割歧义及短语组合上下文依赖问题。本文方法在MSRA和Weibo数据集及自构建工业维修文档数据集上进行了实验,结果表明所提方法能够提高实体识别准确性,并在工业领域汽车零配件数据集上实现了工业场景化应用。Due to the inherent characteristics of industrial domain data,such as its unstructured format,domain-specific nature,and the scarcity of available data,the application of traditional Chinese-Named Entity Recognition(NER)techniques in industrial contexts often leads to suboptimal results.In response,this paper introduces a novel self-attention network algorithm,leveraging automotive industry data,that synergizes label semantics with glyph and phonetic elements.This model employs a self-attention mechanism to discern long-distance textual dependencies and integrates these with word segmentation at the character level.The model notably enhances character and word boundary recognition by fusing these elements with the context of label semantics.This approach effectively mitigates the common ambiguities in word boundary segmentation and the complexities associated with phrase contextual dependencies.Extensive testing on the MSRA and Weibo datasets,and a bespoke industrial maintenance docu⁃ment dataset demonstrates the methods efficacy.The results reveal a significant improvement in entity recognition accuracy,with specific enhancements in industrial scenario applications,particularly in the automotive parts sector datasets.
关 键 词:中文命名实体识别 自注意机制 多特征融合 标签语义
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179