基于EEMD组合模型的钢铁价格预测方法  

Steel Price Forecasting Method Based on EEMD Combined Model

在线阅读下载全文

作  者:陆晓骏 樊重俊[1] 梅亚光 LU Xiaojun;FAN Chongjun;MEI Yaguang(School of Management,University of Shanghai for Science and Technology,Shanghai 200093,China;Digital Intelligence Supply Chain R&D Center,Ouyeel Ltd,Shanghai 201999,China)

机构地区:[1]上海理工大学管理学院,上海200093 [2]欧冶云商数智供应链研发中心,上海201999

出  处:《武汉大学学报(理学版)》2024年第3期387-396,共10页Journal of Wuhan University:Natural Science Edition

基  金:教育部哲学社会科学重大课题攻关项目(20JZD010)。

摘  要:钢铁作为工业大宗商品的代表性商品,其价格研究可以帮助钢铁行业稳定发展。为了探索钢铁价格的变化规律,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法和Transformer注意力机制模型及自回归移动平均(Autoregressive Integrated Moving Average,ARIMA)模型的组合模型EEMD-TRANSFORMER-ARIMA。将钢铁价格时序数据通过EEMD分解,对分解后的分量数据进行平稳性检测,并使用Transformer模型和ARIMA模型进行预测。实验选取6组典型的钢铁价格数据进行预测,结果表明该组合模型可以精确预测非平稳和非线性的时序数据,为钢铁价格分析提供了一种有效的预测方法,有助于辅助政府和企业进行市场决策。As a representative commodity of industrial commodities,steel price research can help the stable development of the steel industry.To explore the dynamics of steel prices,a new combined model named EEMD-TRANSFORMER-ARIMA is proposed,which is based on the Ensemble Empirical Mode Decomposition(EEMD)method and Transformer attention mechanism and Autoregressive Integrated Moving Average(ARIMA)model.EEMD decomposes the steel price time series data,the stability of the decomposed component data is tested,and the Transformer model and ARIMA model are used for prediction.The experiment indicates that the combined models take full advantage of the strong points of several single models and deal with non-stationary and non-linear time series.The result shows that EEMD-TRANSFORMER-ARIMA has excellent predicting performance for all six steel price data.It will be an effective method of prediction that will assist the government and enterprises in making market decisions.

关 键 词:钢铁价格预测 钢铁期货 集合经验模态分解 Transformer模型 

分 类 号:F724.5[经济管理—产业经济] F764.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象