基于近邻传播聚类-K均值聚类的工业用户用电模式挖掘方法  

Methods for Mining the Electricity Consumption Mode of Industrial Users Based on Affinity Propagation Clustering-K-Means Clustering

在线阅读下载全文

作  者:宗一 郑罡 南钰 ZONG Yi ZHENG;Gang NAN;Yu Kaifeng(Power Supply Company,State Grid Henan Electric Power Company,Kaifeng,Henan Province,471000 China)

机构地区:[1]国网河南省电力公司开封供电公司,河南开封471000

出  处:《科技资讯》2024年第12期34-36,共3页Science & Technology Information

基  金:国家河南省电力公司科技项目(项目编号:521790230003)。

摘  要:为了充分发挥用户负荷的可调节潜力,提出了一种基于近邻传播聚类-K均值聚类的工业用户用电模式挖掘方法。首先,比较K均值聚类和近邻传播聚类-K均值聚类的优缺点。在工业用户的选取上,选择最佳聚类数均为3的工业用户负荷数据作为被分析对象以便聚类,借助MATLAB工具对用户负荷数据进行聚类,得到了3组所需的聚类中心,再绘制成曲线以便观察和后续提取特征指标。This paper proposes a method of mining the electricity consumption mode of industrial users based on af-finity propagation clustering-K-means clustering to give full play to the adjustable potential of user loads.Firstly,it compares the advantages and disadvantages of k-means clustering and affinity propagation clustering-K-means clustering.In the selection of industrial users,it selects the industrial user load data with the best clustering number of 3 as the analyed object for clustering,clusters the user load data with the help of the MATLAB tool,and obtains the three groups of required cluster centers,which are then drawn into curves for observation and the subsequent extraction of characteristic indicators.

关 键 词:近邻传播聚类-K均值聚类 工业用户 可调节潜力评估 评估指标体系 多准则决策法 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象