发动机尾喷焰复燃化学反应模型评价与重构  

Evaluation and reconstruction of afterburning reaction kinetics of rocket exhaust plume

在线阅读下载全文

作  者:马杰 王晓冰 王红丽 牛青林 董士奎[4] MA Jie;WANG Xiaobing;WANG Hongli;NIU Qinglin;DONG Shikui(School of Mechanical and Electrical Engineering,North University of China,Taiyuan 030051,China;National Key Laboratory of Scattering and Radiation,Shanghai 200438,China;School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;Key Laboratory of Aerospace Thermophysics of MIIT,Harbin Institute of Technology,Harbin 150001,China)

机构地区:[1]中北大学机电工程学院,山西太原030051 [2]散射辐射全国重点实验室,上海200438 [3]中北大学信息与通信工程学院,山西太原030051 [4]哈尔滨工业大学工信部空天热物理重点实验室,黑龙江哈尔滨150001

出  处:《红外与激光工程》2024年第7期86-100,共15页Infrared and Laser Engineering

基  金:国家自然科学基金项目(52006203,U22B2045);山西省回国留学人员科研资助项目(2021-113)。

摘  要:复燃效应的准确预估对于精细描述尾喷焰反应流场参数和提高尾喷焰红外辐射计算精度至关重要。文中以固体火箭发动机为研究对象,建立尾喷焰复燃有限速率化学反应模型,结合流体计算动力学(Computational Fluid Dynamics,CFD)方法和尾喷焰红外辐射计算模型,评估不同化学反应动力模型在尾喷焰流场参数和红外光谱辐射计算方面的精度,基于各化学反应速率曲线与试验数据重构适用于尾喷焰CO/H_(2)反应体系的10步气相化学反应动力模型,并验证和校核复燃化学反应模型可靠性。结果表明:不同化学反应模型计算所得的尾喷焰流场结构差异微弱,轴向温度峰值最高相差200 K左右,差异主要发生在复燃区域;化学反应动力模型对不稳定产物CO影响最为显著,CO_(2)分布差异主要发生在高含量区域,最大差异达到近50%,且低含量组分的差异高达两三个量级;在2.7μm和4.3μm典型波段内,不同化学反应工况下的尾喷焰光谱辐射峰值强度差异达到近40%;基于反应速率试验数据构建的9组分10步反应的CO/H_2反应体系的尾喷焰辐射计算值与BEM-II试验数据的差异低于6%。该研究可为准确预测火箭发动机尾喷焰反应流场的红外辐射特性提供高保真化学反应动力模型。Objective Diatomic/polyatomic molecules in rocket exhaust plumes emit specific bands of infrared radiation during high-temperature vibrational transitions, making them crucial radiation sources of concern in the measurement field. Usually, afterburning occurs when rocket exhaust plumes mix with air, releasing a large amount of heat and significantly raising the temperature level and infrared radiation of the plumes. Therefore,afterburning is a crucial step in accurately calculating the reacting flow field parameters and infrared radiation of rocket exhaust plumes. Using computational fluid dynamics(CFD) methods to predict the reaction flow field of rocket exhaust plumes and evaluate the degree of afterburning has become a feasible technical approach. This underscores the importance of constructing an accurate chemical reaction kinetics model to predict afterburning in rocket exhaust plumes. A highly accurate flow field structure is essential, as different chemical reaction dynamics models can lead to significant differences in the composition, content, and distribution of the flow field of rocket exhaust plumes. However, the infrared radiation characteristics of rocket exhaust plumes are extremely sensitive to the flow field temperature, component content and distribution. To improve the accuracy of infrared radiation calculation for rocket exhaust plumes, higher requirements are placed on the chemical reaction dynamics model for accurate flow field parameters of rocket exhaust plumes.Methods With solid rocket engines as the research focus, the central difference scheme method is employed to solve the three-dimensional Navier-Stokes(N-S) equations with chemical reaction sources. Based on the finite rate chemical reaction model expressed in the Arrhenius formula, a 10-step gas-phase chemical reaction kinetics model is developed for the CO/H_(2) reaction system. The gas radiation physical properties parameters are computed using the statistical narrow spectral band model, and the radiation transport equation is sol

关 键 词:尾喷焰 复燃效应 化学反应 红外辐射 火箭发动机 

分 类 号:V435[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象