检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李帅辰 武建锋[1,3] LI Shuai-chen;WU Jian-feng(National Time Service Center,Chinese Academy of Sciences,Xi'an 710699,China;School of Integrated Circuits,University of Chinese Academy of Sciences,Beijing 100049,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院国家授时中心,西安710699 [2]中国科学院大学集成电路学院,北京100049 [3]中国科学院大学电子电气与通信工程学院,北京100049
出 处:《科学技术与工程》2024年第20期8568-8576,共9页Science Technology and Engineering
基 金:装备技术基础科研项目(E054 JK1601)。
摘 要:为研究智能优化算法在室内到达时间差(time difference of arrival,TDOA)定位方面的应用效果。首先,分别使用白鲨优化算法(white shark optimizer,WSO)、变色龙优化算法(chameleon swarm algorithm,CSA)、蛇优化算法(snake optimizer,SO)、鲸鱼优化算法(whale optimization algorithm,WOA)、灰狼优化算法(grey wolf optimizer,GWO)、麻雀优化算法(sparrow search algorithm,SSA)这6种智能优化算法进行室内的二维TDOA定位,对比分析上述算法在室内定位领域的表现,并和传统的Taylor算法的定位误差进行对比;接下来,使用SOA算法对BP神经网络进行优化,使用优化后的SOA-BP进行定位,与基础的BP神经网络的定位误差进行对比。结果表明:所使用的6种智能优化算法在室内定位领域有着不错的表现,各智能优化算法的效果相似,平均定位误差为0.44 m,相较于传统的Taylor算法提升约9.2%;SOA-BP的定位误差相较于基础的BP神经网络降低超过30%。To investigate the effectiveness of intelligent optimization algorithms in indoortime difference of arrival(TDOA)localization.Firstly,six intelligent optimization algorithms,namelywhite shark optimizer(WSO),chameleon swarm algorithm(CSA),snake optimizer(SO),whale optimization algorithm(WOA),grey wolf optimizer(GWO),sparrow search algorithm(SSA),were used for two-dimensional indoor TDOA localization.A comparative analysis of these algorithms was conducted in the indoor localization domain,and their performance was compared with the traditional Taylor algorithm in terms of localization error.Subsequently,the SOA algorithm was employed to optimize a back propagation(BP)neural network,and the optimized SOA-BP was used for localization.A comparison was made between the localization error of SOA-BP and the basic BP neural network.The results show that the six intelligent optimization algorithms use exhibit promising performance in indoor localization,with similar effects.The average localization error for each intelligent optimization algorithm is 0.44 m,representing an improvement of about 9.2%compared to the traditional Taylor algorithm.Furthermore,the localization error of SOA-BP is reduced by more than 30%when compared to the basic BP neural network.
关 键 词:智能优化算法 5G室内定位 到达时间差(TDOA) Taylor算法 优化反向传播(BP)神经网络
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7