The Sasa-Satsuma equation with high-order discrete spectra in space-time solitonic regions:soliton resolution via the mixed■-Riemann-Hilbert problem  

在线阅读下载全文

作  者:Minghe Zhang Zhenya Yan 

机构地区:[1]KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Communications in Theoretical Physics》2024年第6期13-25,共13页理论物理通讯(英文版)

摘  要:In this paper,we investigate the Cauchy problem of the Sasa-Satsuma(SS)equation with initial data belonging to the Schwartz space.The SS equation is one of the integrable higher-order extensions of the nonlinear Schrödinger equation and admits a 3×3 Lax representation.With the aid of the■nonlinear steepest descent method of the mixed■-Riemann-Hilbert problem,we give the soliton resolution and long-time asymptotics for the Cauchy problem of the SS equation with the existence of second-order discrete spectra in the space-time solitonic regions.

关 键 词:Sasa-Satsuma equation inverse scattering ■-Riemann-Hilbert problem ■steepest descent method soliton resolution 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象