检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘德林 薛齐齐 杨文慧 牟仁德 何利民 田军 胡风雪 LIU Delin;XUE Qiqi;YANG Wenhui;MU Rende;HE Limin;TIAN Jun;HU Fengxue(AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material,Beijing 100095,China;Beijing Computing Center Co.,Ltd.,Beijing 100094,China;Failure Analysis Center of Aviation Industry Corporation of China,Beijing 100095,China)
机构地区:[1]中国航发北京航空材料研究院,北京100095 [2]航空材料先进腐蚀与防护重点实验室,北京100095 [3]北京市计算中心有限公司,北京100094 [4]航空工业失效分析中心,北京100095
出 处:《材料工程》2024年第7期162-172,共11页Journal of Materials Engineering
基 金:国家科技重大专项(J2019-Ⅳ-0003-0070);航材院基金项目(KJSJ220543)。
摘 要:有限元模拟是研究热障涂层(thermal barrier coatings,TBCs)界面处热生长氧化层(thermally grown oxides,TGO)应力演变的有效手段之一,可为探索TBCs失效机制提供理论支撑。采用先进的热障涂层多因素耦合设备对热障涂层圆管试样模拟发动机工况进行热力耦合循环实验和热循环实验。利用有限元软件ABAQUS对包含真实初始TGO形貌的热障涂层进行有限元建模,分析实验过程中TGO的应力和变形规律。结果表明:在不考虑TGO及界面开裂的情况下,无论是热力耦合模型还是热循环模型,随着循环次数的增加,Mises应力均增加;加热过程中TGO受拉,冷却过程中TGO受压;加热过程的应力均远小于冷却至室温时的应力。经过相同的循环次数,热力耦合模型中的应力值均高于热循环模型中的应力值。经过20,45,70次热循环后,冷却至室温时,TGO应力分别达到2.85,3.65,3.55 GPa,而经过相同次数的热力耦合循环后,冷却至室温时,相同位置的TGO应力分别达到4.01,5.0,4.81 GPa。与热循环相比,在热力耦合条件下,经过相同循环次数冷却至室温时的TGO应力显著增加。Finite element simulation is one of the effective means to study the stress evolution of thermally grown oxides(TGO)at the interface of thermal barrier coatings(TBCs),which can provide theoretical support for exploring the failure mechanism of TBCs.Advanced thermal barrier coating multifactor coupling test equipment was used to conduct thermal-mechanical coupling cycle tests and thermal cycling tests on circular tube specimens coated with TBCs,simulating engine operating conditions.Finite element modeling was conducted on TBCs containing real initial TGO morphology using finite element software ABAQUS,and the stress and deformation patterns of the coatings during tests were analyzed.The results show that without considering TGO and interface cracking,both the thermal-mechanical coupling model and the thermal cycle model exhibit an increase in Mises stress as the number of cycles increases.During the heating process,TGO is subjected to tension,while during the cooling process,TGO is compressed.The stress during the heating process is much lower than that during cooling to room temperature.After the same number of cycles,the stress values in thermal-mechanical coupling model are higher than those in the thermal cycle model.After 20,45,70 thermal cycles,the TGO stresses at room temperature reach 2.85,3.65 GPa and 3.55 GPa,respectively.After the same number of thermal-mechanical coupling cycles;when cooling to room temperature,TGO stresses at the same position at room temperature reach 4.01 GPa,5.0 GPa and 4.81 GPa,respectively.Compared with thermal cycles,under thermal coupling conditions,the TGO stress significantly increased after the same cycles when cooling to room temperature.
分 类 号:TG174.453[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.39.197