检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘沙沙 郑素佩[1] 张成治 封建湖[1] LIU Shasha;ZHENG Supei;ZHANG Chengzhi;FENG Jianhu(School of Science,Chang’an University,Xi’an,Shaanxi 710064,China)
出 处:《计算物理》2024年第4期453-462,共10页Chinese Journal of Computational Physics
基 金:国家自然科学基金(11971075、12101073)资助项目。
摘 要:针对带源项的底部非平坦浅水波方程,本文对高阶紧致中心加权基本无振荡(CCWENO)型熵稳定格式的保平衡性进行研究,证明了格式的保平衡性,通过一维和二维数值算例进行验证。数值结果表明:高阶CCWENO型熵稳定格式具有保平衡性,即便在较粗网格下也能够准确捕捉解的微小扰动。The shallow water equations with source term have steady-state solution.The numerical scheme for solving this kind of equations must have well-balanced property,otherwise it will cause oscillation.For the bottom-non-flat shallow water with source term,this paper studies the well-balanced property of the high order compact central weighted essentially non-oscillatory(CCWENO)entropy stable scheme,and proves its well-balanced property.The theory is verified by one-and two-dimensional numerical examples.The numerical results show that the high order CCWENO scheme has the well-balanced property and can accurately capture the small perturbation of the solution even based on the coarse grid.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229